1
|
Nazli A, Irshad Khan MZ, Rácz Á, Béni S. Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur J Med Chem 2024; 276:116699. [PMID: 39089000 DOI: 10.1016/j.ejmech.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Drugs administered through conventional formulations are devoid of targeting and often spread to various undesired sites, leading to sub-lethal concentrations at the site of action and the emergence of undesired effects. Hence, therapeutic agents should be delivered in a controlled manner at target sites. Currently, stimuli-based drug delivery systems have demonstrated a remarkable potential for the site-specific delivery of therapeutic moieties. pH is one of the widely exploited stimuli for drug delivery as several pathogenic conditions such as tumor cells, infectious and inflammatory sites are characterized by a low pH environment. This review article aims to demonstrate various strategies employed in the design of acid-sensitive prodrugs, providing an overview of commercially available acid-sensitive prodrugs. Furthermore, we have compiled the progress made for the development of new acid-sensitive prodrugs currently undergoing clinical trials. These prodrugs include albumin-binding prodrugs (Aldoxorubicin and DK049), polymeric micelle (NC-6300), polymer conjugates (ProLindac™), and an immunoconjugate (IMMU-110). The article encompasses a broad spectrum of studies focused on the development of acid-sensitive prodrugs for anticancer, antibacterial, and anti-inflammatory agents. Finally, the challenges associated with the acid-sensitive prodrug strategy are discussed, along with future directions.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | | | - Ákos Rácz
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary.
| |
Collapse
|
2
|
Kumari M, Sharma S, Kanwar N, Naman S, Baldi A. Dextran-based Drug Delivery Approaches for Lung Diseases: A Review. Curr Drug Deliv 2024; 21:1474-1496. [PMID: 38243938 DOI: 10.2174/0115672018267737231116100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/22/2024]
Abstract
Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today's world. Dextran, an exopolysaccharide formed by Leuconostoc mesenteroides (slimeproducing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextranbased drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, antiinflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, watersoluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases. With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.
Collapse
Affiliation(s)
- Manisha Kumari
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Sanyam Sharma
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Navjot Kanwar
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Subh Naman
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| |
Collapse
|
3
|
Chen C, Xu C, Zhai J, Ma Y, Zhao C, Yang W. Solvent-free preparation of uniform styrene/maleimide copolymer microspheres from solid poly(styrene-alt-maleic anhydride) microspheres. Polym Chem 2022. [DOI: 10.1039/d1py01540k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A solvent-free strategy to prepare poly(styrene-alt-maleimide) (SMI) provides a facile and environmentally friendly pathway to a large-scale low cost production of monodisperse SMI microspheres.
Collapse
Affiliation(s)
- Chuxuan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Can Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiaxin Zhai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Kalva N, Uthaman S, Lee SJ, Lim YJ, Augustine R, Huh KM, Park IK, Kim I. Degradable pH-responsive polymer prodrug micelles with aggregation-induced emission for cellular imaging and cancer therapy. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Optimized mesoporous silica nanoparticle-based drug delivery system with removable manganese oxide gatekeeper for controlled delivery of doxorubicin. J Colloid Interface Sci 2021; 592:227-236. [PMID: 33662827 DOI: 10.1016/j.jcis.2021.02.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Rapid progress has been made for mesoporous silica nanoparticle (MSN) in recent years; however, efforts to fabricate MSN with adjustable size have been met with limited advancement in drug delivery, especially for the synthesis of MSN with adjustable size in the range of 150-300 nm. Herein we report the construction of a series of MSNs with adjustable specific surface area, size, and pore structure, depending on the different silicon monomers selected. The optimized MSN showed large specific surface area and appropriate size distribution for efficiently anchoring doxorubicin (DOX) through the imine linkage formed. Based on the remarkable features of the unique MSN, a novel MSN-based drug delivery system was prepared through the introduction of polydopamine/manganese oxide (PDA/MnO2) coating, which reduced the premature leakage of drugs in physiological environments, and yet facilitated drug release when destroyed by responding to endogenous glutathione (GSH) at the tumor sites. Notably, the transformation of MnO2 to Mn2+ resulted in the collapse of the PDA/MnO2 coating, which facilitated drug release and therefore indicated the controlled release feature. It was demonstrated that the drug-loaded MSN-based drug delivery system delivered drugs into cancer cells and showed effective inhibition against cancer cell growth. These results suggested that the emergence of MSN with adjustable size can expand the application of MSN in drug delivery.
Collapse
|
6
|
Wang J, Zhang H, Xu J, Qian H, Liu R, Xu Z, Zhu H. Sustained‐release ibuprofen prodrug particle: Emulsifier and initiator regulate the diameter and distribution. J Appl Polym Sci 2021. [DOI: 10.1002/app.49779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Wang
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Haixin Zhang
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Jie Xu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Hao Qian
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Rui Liu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Zengchang Xu
- Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
7
|
Chen F, Huang G, Huang H. Preparation and application of dextran and its derivatives as carriers. Int J Biol Macromol 2019; 145:827-834. [PMID: 31756474 DOI: 10.1016/j.ijbiomac.2019.11.151] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
As a natural and renewable biological macromolecule, dextran not only has excellent biodegradability, but also has good biocompatibility. Dextran and its derivatives are functional polymers for the construction of targeted drug delivery systems. Herein, the application of dextran as prodrug and nanoparticle/nanogel/microsphere/micelle carrier for targeting drug delivery system was summarized. It is clarified that dextran is an important biomaterial with application value.
Collapse
Affiliation(s)
- Fang Chen
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| |
Collapse
|
8
|
Liu P, Zhang R. Polymer microspheres with high drug-loading capacity via dual-modal drug-loading for modulating controlled release property in pH/reduction dual-responsive tumor-specific intracellular triggered doxorubicin release. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Dong Y, Du P, Pei M, Liu P. Design, postpolymerization conjugation and self-assembly of a di-block copolymer-based prodrug for tumor intracellular acid-triggered DOX release. J Mater Chem B 2019; 7:5640-5647. [DOI: 10.1039/c9tb01511f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel di-block copolymer-based prodrug was designed by atom transfer radical polymerization (ATRP) of glycidyl methacrylate (GMA) with a polyethylene glycol-based initiator (PEG-Br), postpolymerization aldehyde-modification, and doxorubicin (DOX) conjugation via an acid-labile imine bond.
Collapse
Affiliation(s)
- Yuman Dong
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Pengcheng Du
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Mingliang Pei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
10
|
Pei M, Jia X, Zhao X, Li J, Liu P. Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohydr Polym 2018; 183:131-139. [DOI: 10.1016/j.carbpol.2017.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
|
11
|
Wang SW, Lin YK, Fang JY, Lee RS. Photo-responsive polymeric micelles and prodrugs: synthesis and characterization. RSC Adv 2018; 8:29321-29337. [PMID: 35547974 PMCID: PMC9084478 DOI: 10.1039/c8ra04580a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/11/2018] [Indexed: 11/25/2022] Open
Abstract
Bio-recognizable and photocleavable amphiphilic glycopolymers and prodrugs containing photodegradable linkers (i.e. 5-hydroxy-2-nitrobenzyl alcohol) as junction points between bio-recognizable hydrophilic glucose (or maltose) and hydrophobic poly(α-azo-ε-caprolactone)-grafted alkyne or drug chains were synthesized by combining ring-opening polymerization, nucleophilic substitution, and “click” post-functionalization with alkynyl-pyrene and 2-nitrobenzyl-functionalized indomethacin (IMC). The block-grafted glycocopolymers could self-assemble into spherical photoresponsive micelles with hydrodynamic sizes of <200 nm. Fluorescence emission measurements indicated the release of Nile red, a hydrophobic dye, encapsulated by the Glyco-ONB-P(αN3CL-g-alkyne)n micelles, in response to irradiation caused by micelle disruption. Light-triggered bursts were observed for IMC-loaded or -conjugated micelles during the first 5 h. Following light irradiation, the drug release rate of IMC-conjugated micelles was faster than that of IMC-loaded micelles. Selective lectin binding experiments confirmed that glycosylated Glyco-ONB-P(αN3CL-g-alkyne)n could be used in bio-recognition applications. The nano-prodrug with and without UV irradiation was associated with negligible levels of toxicity at concentrations of less than 30 μg mL−1. The confocal microscopy and flow cytometry results indicated that the uptake of doxorubicin (DOX)-loaded micelles with UV irradiation by HeLa cells was faster than without UV irradiation. The DOX-loaded Gluco-ONB-P(αN3CL-g-PONBIMC)10 micelles effectively inhibited HeLa cells' proliferation with a half-maximal inhibitory concentration of 8.8 μg mL−1. Bio-recognizable and photocleavable amphiphilic glycopolymers and prodrugs containing photodegradable linkers as junction points between hydrophilic glycose and hydrophobic poly(α-azo-ε-caprolactone)-grafted alkyne or drug chains were synthesized.![]()
Collapse
Affiliation(s)
- Shiu-Wei Wang
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| | - Yin-Ku Lin
- Department of Traditional Chinese Medicine
- Chang Gung Memorial Hospital at Keelung
- Keelung
- Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products
- Chang Gung University
- Tao-Yuan
- Taiwan
| | - Ren-Shen Lee
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| |
Collapse
|
12
|
Design of pH/reduction dual-responsive nanoparticles as drug delivery system for DOX: Modulating controlled release behavior with bimodal drug-loading. Colloids Surf B Biointerfaces 2017; 160:455-461. [DOI: 10.1016/j.colsurfb.2017.09.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022]
|
13
|
Bao Y, Kong M, Gao X, Yin M, Deng H, Tan Q, Wang Q, Tan S. pH-, redox dual-sensitive poly(β-amino ester)-g-TPGS copolymer nanoparticles for drug delivery and inhibition of multidrug resistance in cancer. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|