1
|
Mahato M, Mardanya S, Rahman Z, Tohora N, Pramanik P, Ghanta S, Chowdhury AA, Kumar Shaw T, Kumar Das S. A Coumarin Coupled Electron Donor-Acceptor Dyad for Cascade Detection of Aluminium Ions and Explosive Nitroaromatic Compounds. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Unniram Parambil AR, P K, Silswal A, Koner AL. Water-soluble optical sensors: keys to detect aluminium in biological environment. RSC Adv 2022; 12:13950-13970. [PMID: 35558844 PMCID: PMC9090444 DOI: 10.1039/d2ra01222g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Metal ion plays a critical role from enzyme catalysis to cellular health and functions. The concentration of metal ions in a living system is highly regulated. Among the biologically relevant metal ions, the role and toxicity of aluminium in specific biological functions have been getting significant attention in recent years. The interaction of aluminium and the living system is unavoidable due to its high earth crust abundance, and the long-term exposure to aluminium can be fatal for life. The adverse Al3+ toxicity effects in humans result in various diseases ranging from cancers to neurogenetic disorders. Several Al3+ ions sensors have been developed over the past decades using the optical responses of synthesized molecules. However, only limited numbers of water-soluble optical sensors have been reported so far. In this review, we have confined our discussion to water-soluble Al3+ ions detection using optical methods and their utility for live-cell imaging and real-life application.
Collapse
Affiliation(s)
- Ajmal Roshan Unniram Parambil
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri 462066 Bhopal Madhya Pradesh India
- Department of Chemistry, University of Basel 4058 Basel Switzerland
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Kavyashree P
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri 462066 Bhopal Madhya Pradesh India
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri 462066 Bhopal Madhya Pradesh India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri 462066 Bhopal Madhya Pradesh India
| |
Collapse
|
3
|
Musikavanhu B, Muthusamy S, Zhu D, Xue Z, Yu Q, Chiyumba CN, Mack J, Nyokong T, Wang S, Zhao L. A simple quinoline-thiophene Schiff base turn-off chemosensor for Hg 2+ detection: spectroscopy, sensing properties and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120338. [PMID: 34482149 DOI: 10.1016/j.saa.2021.120338] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
A new Schiff base probe (QT) consisting of 8-aminoquinoline (Q) and thiophene-2-carboxaldehyde (T) moieties has been synthesized. QT undergoes chelation-enhanced fluorescence quenching when exposed to Hg2+ due to coordination by the sulfur and nitrogen atoms of QT thus forming a facile "turn-off" sensor. The formation of the chelation complex was confirmed by UV-visible absorption and emission spectral measurements, 1H NMR titration and density functional theory calculations. These studies revealed that the probe exhibits high selectivity and sensitivity towards Hg2+ in the presence of other common metal ions. A low detection limit of 23.4 nM was determined and a Job plot confirmed a 2:1 stoichiometry between QT and Hg2+. The potential utility of QT as a sensor for Hg2+ ions in human HeLa cells was determined by confocal fluorescence microscopy, and its suitability for use in the field with environmental samples was tested with Whatman filter paper strips.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Selvaraj Muthusamy
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China.
| | - Choonzo N Chiyumba
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Selective detection of Fe (III) via fluorescence turn-on mechanism with Rhodamine tethered poly(vinyl amine) microbeads. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03930-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Immanuel David C, Prabakaran G, Nandhakumar R. Recent approaches of 2HN derived fluorophores on recognition of Al3+ ions: A review for future outlook. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Xu Y, Kong L, Bai L, Chen A, Li N, Cheng L, Liu W, Sun X, Tao F, Wang L, Li G. A new water-soluble polymer fluorescent chemosensor with thiophene Schiff base site for selectively sensing Al3+ ions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Hu JP, Yang HH, Lin Q, Yao H, Zhang YM, Wei TB, Qu WJ. A rhodamine-based dual chemosensor for the naked-eye detection of Hg 2+ and enhancement of the fluorescence emission for Fe 3. Photochem Photobiol Sci 2020; 19:1690-1696. [PMID: 33206102 DOI: 10.1039/d0pp00302f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel fluorescent chemosensor based on trimesoyl chloride-rhodamine (TR) was successfully synthesized. Rising chromogenic and fluorogenic spectral enhancements could be observed in trimesoyl chloride-rhodamine (TR) probes when Hg2+ and Fe3+ were added, respectively. TR has shown selectivity for Hg2+ and Fe3+ with high sensitivity due to metal ion complexation induced photophysical "turn-on" signaling responses. The detection limit towards Hg2+ was 2.46 × 10-8 M as determined by the 3σ method. At the same time, fluorogenic spectral enhancements were observed in TR, which exhibits a superior sensitive and selective recognition towards Fe3+ with 4.11 × 10-8 M of the detection limit. The test strips were used for colorimetric and simple detection towards Hg2+, which might finally enable the advancement of the Hg2+ sensor in the field of on-site detection.
Collapse
Affiliation(s)
- Jian-Peng Hu
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Mahalakshmi G, Kumar PS, Vennila KN, Sivaraman G, Seenivasaperumal M, Elango KP. Multi-site probe for selective turn-on fluorescent detection of Al(III) in aqueous solution: synthesis, cation binding, mode of coordination, logic gate and cell imaging. Methods Appl Fluoresc 2020; 8:035003. [PMID: 32320385 DOI: 10.1088/2050-6120/ab823e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An easy to make organic probe (hereafter called as R) possessing multiple ligating sites have been synthesized and characterized using spectral techniques. The probe exhibits selective and sensitive turn-on fluorescence response with Al(III) in aqueous dimethylformamide (DMF) (1:1 v/v) solution. Fluorescence titration experiment shows that the probe binds with Al(III) with a 1:1 stoichiometry and a binding constant of 6.6 × 104 M-1.The mode of coordination of R with Al(III) has been established suing 27Al and 1H NMR studies and the results suggest formation of an octahedral complex been them. The suggested point of attachment of R with Al(III) corroborates well with Density Functional Theory (DFT) optimized structure and Mulliken charges computed. Chelation-enhanced fluorescence (CHEF) is proposed as the mechanism of enhancement of fluorescence upon addition of Al(III) to R. The probe detects Al(III) in aqueous solution with a detection limit of 0.2 μM, which is much lower than the permissible limit of Al(III) set by the World Health Organization (WHO).The probe works in a wide pH range (4-11) and thus makes it a suitable candidate for environmental and biological applications. The fluorescence signals of R were used to construct an INHIBIT molecular logic gate. The confocal fluorescence microscope experiments show that R could be employed as a fluorescent probe for detecting Al(III) in living cells.
Collapse
Affiliation(s)
- G Mahalakshmi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624 302, India
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Bai L, Xu Y, Li G, Tian S, Li L, Tao F, Deng A, Wang S, Wang L. A Highly Selective Turn-on and Reversible Fluorescent Chemosensor for Al 3+ Detection Based on Novel Salicylidene Schiff Base-Terminated PEG in Pure Aqueous Solution. Polymers (Basel) 2019; 11:polym11040573. [PMID: 30960557 PMCID: PMC6523932 DOI: 10.3390/polym11040573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
The development of highly selective and sensitive chemosensors for Al3+ detection in pure aqueous solution is still a significant challenge. In this work, a novel water-soluble polymer PEGBAB based on salicylidene Schiff base has been designed and synthesized as a turn-on fluorescent chemosensor for the detection of Al3+ in 100% aqueous solution. PEGBAB exhibited high sensitivity and selectivity to Al3+ over other competitive metal ions with the detection limit as low as 4.05 × 10−9 M. PEGBAB displayed high selectivity to Al3+ in the pH range of 5–10. The fluorescence response of PEGBAB to Al3+ was reversible in the presence of ethylenediaminetetraacetic acid (EDTA). Based on the fluorescence response, an INHIBIT logic gate was constructed with Al3+ and EDTA as two inputs. Moreover, test strips based on PEGBAB were fabricated facilely for convenient on-site detection of Al3+.
Collapse
Affiliation(s)
- Liping Bai
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Yuhang Xu
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Guang Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Shuhui Tian
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Leixuan Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Farong Tao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Aixia Deng
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Shuangshuang Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Liping Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|