1
|
Elashnikov R, Khrystonko O, Trelin A, Kuchař M, Švorčík V, Lyutakov O. Label-free SERS-ML detection of cocaine trace in human blood plasma. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134525. [PMID: 38743978 DOI: 10.1016/j.jhazmat.2024.134525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The widespread consumption of cocaine poses a significant threat to modern society. The most effective way to combat this problem is to control the distribution of cocaine, based on its accurate and sensitive detection. Here, we proposed the detection of cocaine in human blood plasma using a combination of surface enhanced Raman spectroscopy and machine learning (SERS-ML). To demonstrate the efficacy of our proposed approach, cocaine was added into blood plasma at various concentrations and drop-deposited onto a specially prepared disposable SERS substrate. SERS substrates were created by deposition of metal nanoclusters on electrospun polymer nanofibers. Subsequently, SERS spectra were measured and as could be expected, the manual distinguishing of cocaine from the spectra proved unfeasible, as its signal was masked by the background signal from blood plasma molecules. To overcome this issue, a database of SERS spectra of cocaine in blood plasma was collected and used for ML training and validation. After training, the reliability of proposed approach was tested on independently prepared samples, with unknown for SERS-ML cocaine presence or absence. As a result, the possibility of rapid determination of cocaine in blood plasma with a probability above 99.5% for cocaine concentrations up to 10-14 M was confirmed. Therefore, it is evident that the proposed approach has the ability to detect trace amounts of cocaine in bioliquids in an express and simple manner.
Collapse
Affiliation(s)
- Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Olena Khrystonko
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Andrii Trelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| |
Collapse
|
2
|
Mohamed MA, Abd El-Rahman MK, Mousavi MPS. Electrospun nanofibers: promising nanomaterials for biomedical applications. ELECTROCHEMISTRY 2023:225-260. [DOI: 10.1039/bk9781839169366-00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
With the rapid development of nanotechnology and nanomaterials science, electrospun nanofibers emerged as a new material with great potential for a variety of applications. Electrospinning is a simple and adaptable process for generation of nanofibers from a viscoelastic fluid using electrostatic repulsion between surface charges. Electrospinning has been used to manufacture nanofibers with low diameters from a wide range of materials. Electrospinning may also be used to construct nanofibers with a variety of secondary structures, including those having a porous, hollow, or core–sheath structure. Due to many attributes including their large specific surface area and high porosity, electrospun nanofibers are suitable for biosensing and environmental monitoring. This book chapter discusses the different methods of nanofiber preparations and the challenges involved, recent research progress in electrospun nanofibers, and the ways to commercialize these nanofiber materials.
Collapse
Affiliation(s)
- Mona A. Mohamed
- Pharmaceutical Chemistry Department, Egyptian Drug Authority Giza Egypt
- Biomedical Engineering University of Southern California Los Angeles USA
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy Cairo University, Kasr-El Aini Street Cairo 11562 Egypt
| | - Maral P. S. Mousavi
- Analytical Chemistry Department, Faculty of Pharmacy Cairo University, Kasr-El Aini Street Cairo 11562 Egypt
| |
Collapse
|
3
|
Jiang D, Song X, Zhang H, Yuan M. Removal of Organic Pollutants with Polylactic Acid-Based Nanofiber Composites. Polymers (Basel) 2022; 14:4622. [PMID: 36365614 PMCID: PMC9654922 DOI: 10.3390/polym14214622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 10/28/2023] Open
Abstract
In the process of using nano-titanium dioxide (TiO2) photocatalytic treatment of organic polluted liquid, the easy aggregation and recycling difficulty of nano-TiO2 particles are important problems that cannot be avoided. Anchoring nano-TiO2 to the substrate not only limits the aggregation of nano-TiO2, but also facilitates the easy removal and reuse of nano-TiO2 after processing. Herein, coaxial electrospun nanofibrous (NFs) made of L-polylactic acid (PLLA) and chitosan (CS) are coated with graphene oxide (GO) and TiO2 for the enhanced oxidation of organic pollutants. The adsorption and photocatalysis experiment results show that, for methyl orange (MO) dye solution, the saturated removal of MO by PLLA/CS, PLLA/CS-GO and PLLA/CS-GO/TiO2 nanofibers are 60.09 mg/g, 78.25 mg/g and 153.22 mg/g, respectively; for the Congo red (CR) dye solution, the saturated removal of CR by PLLA/CS, PLLA/CS-GO and PLLA/CS-GO/TiO2 nanofiber materials were 138.01 mg/g, 150.22 mg/g and 795.44 mg/g, respectively. These three composite nanofiber membrane materials can maintain more than 80% of their adsorption capacity after four repeated cycles. They are environmentally friendly and efficient organic pollution remediation materials with promising application.
Collapse
Affiliation(s)
| | | | | | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National &Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
4
|
Preparation and Applications of Electrospun Nanofibers for Wearable Biosensors. BIOSENSORS 2022; 12:bios12030177. [PMID: 35323447 PMCID: PMC8946134 DOI: 10.3390/bios12030177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
The emergence of nanotechnology has provided many new ideas and innovations in the field of biosensors. Electrospun nanofibers have many excellent properties such as high specific surface area, high porosity, low cost, high efficiency, and they can be combined with a variety of sensors. These remarkable features have a wide range of applications in the field of sensors such as monitoring air pollutants, highly sensitive pressure sensors, and biosensors for monitoring the pulse of the body. This paper summarizes the working principle and influencing factors of electrospinning nanofibers, and illustrates their applications in wearable biosensors.
Collapse
|
5
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|