1
|
Kudo R, Samitsu S, Mori H. Self-healing amino acid-bearing acrylamides/ n-butyl acrylate copolymers via multiple noncovalent bonds. RSC Adv 2024; 14:7850-7857. [PMID: 38449826 PMCID: PMC10915467 DOI: 10.1039/d4ra00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Four amino acid-bearing acrylamides, N-acryloyl-l-threonine (AThrOH), N-acryloyl-l-glutamic acid (AGluOH), N-acryloyl-l-phenylalanine (APheOH), and N-acryloyl-l, l-diphenylalanine (APhePheOH), were selected for copolymerization with n-butyl acrylate (nBA) to develop amino acid-based self-healable copolymers. A series of copolymers comprising amino acid-bearing acrylamides and nBA with tunable comonomer compositions and molecular weights were synthesized by free radical and reversible addition-fragmentation chain-transfer copolymerization. Self-healing and mechanical properties originated from the noncovalent bonds between the carboxyl, hydroxyl, and amide groups, and π-π stacking interactions among the amino acid residues in the side chains were evaluated. Among these copolymers, P(nBA-co-AGluOH) with suitable comonomer compositions and molecular weights (nBA : AGluOH = 82 : 18, Mn = 18 300, Mw/Mn = 2.58) exhibited good mechanical properties (modulus of toughness = 17.3 MJ m-3) and self-healing under ambient conditions. The multiple noncovalent bonds of P(nBA-co-AGluOH)s were also efficient in improving the optical properties with an enhanced refractive index and good transparency.
Collapse
Affiliation(s)
- Ryo Kudo
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University 4-3-16, Jonan Yonezawa City Yamagata Prefecture 992-8510 Japan
| | - Sadaki Samitsu
- National Institute for Materials Science 1-2-1, Sengen Tsukuba 305-0047 Japan
| | - Hideharu Mori
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University 4-3-16, Jonan Yonezawa City Yamagata Prefecture 992-8510 Japan
| |
Collapse
|
2
|
CO2-responsive nanofibrous membranes with gas-tunable wettability for switchable oil/water separation. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2022.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Dinda P, Anas M, Banerjee P, Mandal TK. Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
4
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
5
|
Kawano S, Lie J, Ohgi R, Shizuma M, Muraoka M. Modulating Polymeric Amphiphiles Using Thermo- and pH-Responsive Copolymers with Cyclodextrin Pendant Groups through Molecular Recognition of the Lipophilic Dye. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shintaro Kawano
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Jenni Lie
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
- Department of Chemical Engineering, National Taiwan University of Science and Technology (NTUST), No. 43, Keelung Rd., Sec. 4, Da’an Dist., Taipei 10607, Taiwan
| | - Ryusei Ohgi
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Motohiro Shizuma
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Masahiro Muraoka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
6
|
Kanto R, Yonenuma R, Yamamoto M, Furusawa H, Yano S, Haruki M, Mori H. Mixed Polyplex Micelles with Thermoresponsive and Lysine-Based Zwitterionic Shells Derived from Two Poly(vinyl amine)-Based Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3001-3014. [PMID: 33650430 DOI: 10.1021/acs.langmuir.0c02197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two series of poly(vinyl amine) (PVAm)-based block copolymers with zwitterionic and thermoresponsive segments were synthesized by the reversible addition-fragmentation chain transfer polymerization. A mixture of the two copolymers, poly(N-acryloyl-l-lysine) (PALysOH) and poly(N-isopropylacrylamide) (PNIPAM), which have the same cationic PVAm chain but different shell-forming segments, were used to prepare mixed polyplex micelles with DNA. Both PVAm-b-PALysOH and PVAm-b-PNIPAM showed low cytotoxicity, with characteristic assembled structures and stimuli-responsive properties. The cationic PVAm segment in both block copolymers showed site-specific interactions with DNA, which were evaluated by dynamic light scattering, zeta potential, circular dichroism, agarose gel electrophoresis, atomic force microscopy, and transmission electron microscopy measurements. The PVAm-b-PNIPAM/DNA polyplexes showed the characteristic temperature-induced formation of assembled structures in which the polyplex size, surface charge, chiroptical property of DNA, and polymer-DNA binding were governed by the nitrogen/phosphate (N/P) ratio. The DNA binding strength and colloidal stability of the PVAm-b-PALysOH/DNA polyplexes could be tuned by introducing an appropriate amount of zwitterionic PALysOH functionality, while maintaining the polyplex size, surface charge, and chiroptical property, regardless of the N/P ratio. The mixed polyplex micelles showed temperature-induced stability originating from the hydrophobic (dehydrated) PNIPAM chains upon heating, and remarkable stability under salty conditions owing to the presence of the zwitterionic PALysOH chain on the polyplex surface.
Collapse
Affiliation(s)
- Ryosuke Kanto
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Ryo Yonenuma
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Mizuki Yamamoto
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
| | - Hiroyuki Furusawa
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Mitsuru Haruki
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
7
|
Semsarilar M, Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mona Semsarilar
- Institut Européen des Membranes IEM (UMR5635) Université Montpellier CNRS ENSCM CC 047, Université Montpellie 2 place E. Bataillon Montpellier 34095 France
| | - Volker Abetz
- Institut für Physikalische Chemie Grindelallee 117 Universität Hamburg Hamburg 20146 Germany
- Zentrum für Material‐und Küstenforschung GmbH Institut für Polymerforschung Max‐Planck‐Straße 1 Helmholtz‐Zentrum Geesthacht Geesthacht 21502 Germany
| |
Collapse
|
8
|
Fitzgerald ER, Mineo AM, Pryor ML, Buck ME. Photomediated post-fabrication modification of azlactone-functionalized gels for the development of hydrogel actuators. SOFT MATTER 2020; 16:6044-6049. [PMID: 32638814 DOI: 10.1039/d0sm00832j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report an approach for the photomediated post-fabrication modification of reactive, azlactone-containing gels using light-initiated deprotection of amines caged with 2-(nitrophenyl)propyloxycarbonyl (NPPOC). Photomediated modification of these gels can be used to generate a gradient in chemical functionality. When functionalized with tertiary amine groups, these gradient gels exhibit rapid and reversible shape deformations in response to changes in pH.
Collapse
Affiliation(s)
- Emily R Fitzgerald
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Autumn M Mineo
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Mae L Pryor
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Maren E Buck
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| |
Collapse
|