1
|
Cui Y, Liu Y, Gu D, Zhu H, Wang M, Dong M, Guo Y, Sun H, Hao J, Hao X. Three-Dimensional Cross-Linking Network Coating for the Flame Retardant of Bio-Based Polyamide 56 Fabric by Weak Bonds. Polymers (Basel) 2024; 16:1044. [PMID: 38674963 PMCID: PMC11054862 DOI: 10.3390/polym16081044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Weak bonds usually make macromolecules stronger; therefore, they are often used to enhance the mechanical strength of polymers. Not enough studies have been reported on the use of weak bonds in flame retardants. A water-soluble polyelectrolyte complex composed of polyethyleneimine (PEI), sodium tripolyphosphate (STPP) and melamine (MEL) was designed and utilized to treat bio-based polyamide 56 (PA56) by a simple three-step process. It was found that weak bonds cross-linked the three compounds to a 3D network structure with MEL on the surface of the coating under mild conditions. The thermal stability and flame retardancy of PA56 fabrics were improved by the controlled coating without losing their mechanical properties. After washing 50 times, PA56 still kept good flame retardancy. The cross-linking network structure of the flame retardant enhanced both the thermal stability and durability of the fabric. STPP acted as a catalyst for the breakage of the PA56 molecular chain, PEI facilitated the char formation and MEL released non-combustible gases. The synergistic effect of all compounds was exploited by using weak bonds. This simple method of developing structures with 3D cross-linking using weak bonds provides a new strategy for the preparation of low-cost and environmentally friendly flame retardants.
Collapse
Affiliation(s)
- Yunlong Cui
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Dongxu Gu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Hongyu Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Meihui Wang
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Mengjie Dong
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Yafei Guo
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Hongyu Sun
- Binzhou Huafang Engineering Technology Research Institute, Binzhou 256617, China;
| | - Jianyuan Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Xinmin Hao
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| |
Collapse
|
2
|
Bi X, Song K, Pan YT, Barreneche C, Vahabi H, He J, Yang R. Hollow Superstructure In Situ Assembled by Single-Layer Janus Nanospheres toward Electromagnetic Shielding Flame-Retardant Polyurea Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307492. [PMID: 37946679 DOI: 10.1002/smll.202307492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Indexed: 11/12/2023]
Abstract
A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF-67 nanodots is prepared by in situ polymerization, with ZIF-67 and bio-based phytic acid (PA) as templates and dopants. It is used to improve the flame retardant, electromagnetic (EMI) shielding, and thermal conductivity properties of polyurea (PUA). By adding 5 wt% polyaniline@cobalt phytate-2.0 (PANI@Co-PA-2.0), the peak of heat release rate and the peak of smoke production rate are reduced by 54.9 and 59.9%, respectively. The peak of CO and CO2 production also decreased by 46.2 and 53.1%, respectively. A decrease in the absorption intensity of aliphatic and aromatic volatiles is also observed. The fire safety of PUA is greatly improved. In addition, PUA/PANI@Co-PA-2.0 exhibits an EMI shielding capability of 22.4 dB with the help of reduced graphene oxide, which confirms the possibility of PUA material application in the field of electromagnetic shielding. The 5 wt% filler increases the tensile strength of the PUA matrix to 6.3 MPa, and the composite material obtains good thermal conductivity. This work provides a viable method for the preparation of a flame-retardant, conductive, and electromagnetic refractory PUA substrate.
Collapse
Affiliation(s)
- Xue Bi
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Zhongyuan Research Center for Flame Retardant Materials, Beijing Institute of Technology, Xuchang, Henan, 461000, P. R. China
| | - Kunpeng Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Camila Barreneche
- Departament de Ciencia de Materials i Química Física, Seccio de Ciencia de Materials, Facultat de Química, Universitat de Barcelona, C/Martí I Franques 1-11, Barcelona, 08028, Spain
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, Metz, F-57000, France
| | - Jiyu He
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Zhongyuan Research Center for Flame Retardant Materials, Beijing Institute of Technology, Xuchang, Henan, 461000, P. R. China
| |
Collapse
|
3
|
Mirani Nezhad S, Pourmousavi SA, Nazarzadeh Zare E, Heidari G, Manoochehri H, Sharifi E. Poly(aniline-co-melamine)@MnFe2O4 nanocatalyst for the synthesis of 4,4′-(arylmethylene) bis (1H-pyrazole-5-ol) derivatives, and 1,4- dihydropyrano[2,3-c]pyrazoles and evaluation of their antioxidant, and anticancer activities. Front Chem 2022; 10:1046120. [PMID: 36385997 PMCID: PMC9649443 DOI: 10.3389/fchem.2022.1046120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, magnetic poly(aniline-co-melamine) nanocomposite as an efficient heterogeneous polymer-based nanocatalyst was fabricated in two steps. First, poly(aniline-co-melamine) was synthesized through the chemical oxidation by ammonium persulfate, then the magnetic nanocatalyst was successfully prepared from the in-situ coprecipitation method in the presence of poly(aniline-co-melamine). The resulting poly(aniline-co-melamine)@MnFe2O4 was characterized by FTIR, FESEM, XRD, VSM, EDX, TGA, and UV-vis analyses. The catalytic activity of poly(aniline-co-melamine)@MnFe2O4 was investigated in the synthesis of 4,4′-(arylmethylene)bis(1H-pyrazole-5-ol) derivatives, and new alkylene bridging bis 4,4′-(arylmethylene)bis(1H-pyrazole-5-ol) derivatives in excellent yields. The yield of 1,4-dihydropyrano[2,3-c]pyrazoles, 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol), yields, and new alkylene bridging bis 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol) derivatives were obtained 89%–96%, 90%–96%, and 92%–96%, respectively. The poly(aniline-co-melamine)@MnFe2O4 nanocatalyst can be recycled without pre-activation and reloaded up to five consecutive runs without a significant decrease in its efficiency. In addition, the antioxidant activity of some derivatives was evaluated by DPPH assay. Results showed that the maximum antioxidant activity of 4,4′-(arylmethylene)bis(1H-pyrazole-5-ol) derivatives and 1,4-dihydropyrano[2,3-c]pyrazoles were 75% and 90%, respectively. Furthermore, 4,4′-(arylmethylene)bis(1H-pyrazole-5-ol) derivatives and 1,4-dihydropyrano[2,3-c]pyrazoles showed good potential for destroying colon cancer cell lines. Consequently, the poly(aniline-co-melamine)@MnFe2O4 nanocomposite is an excellent catalyst for green chemical processes owing to its high catalytic activity, stability, and reusability.
Collapse
Affiliation(s)
| | | | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan, Iran
- *Correspondence: Ehsan Nazarzadeh Zare, ,
| | | | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Ahmed I, Wageh S, Rehman W, Iqbal J, Mir S, Al-Ghamdi A, Khalid M, Numan A. Evaluation of the Synergistic Effect of Graphene Oxide Sheets and Co 3O 4 Wrapped with Vertically Aligned Arrays of Poly (Aniline-Co-Melamine) Nanofibers for Energy Storage Applications. Polymers (Basel) 2022; 14:2685. [PMID: 35808730 PMCID: PMC9269555 DOI: 10.3390/polym14132685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the present study, Co3O4 and graphene oxide (GO) are used as reinforcement materials in a copolymer matrix of poly(aniline-co-melamine) to synthesize ternary composites. The nanocomposite was prepared by oxidative in-situ polymerization and used as an electrode material for energy storage. The SEM images revealed the vertically aligned arrays of copolymer nanofibers, which entirely wrapped the GO sheets and Co3O4 nanoparticles. The EDX and mapping analysis confirmed the elemental composition and uniform distribution in the composite. The XRD patterns unveiled composites' phase purity and crystallinity through characteristic peaks appearing at their respective 2θ values in the XRD spectrum. The FTIR spectrums endorse the successful synthesis of composites, whereas TGA analysis revealed the higher thermal stability of composites. The cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are employed to elucidate the electrochemical features of electrodes. The ternary composite PMCoG-2 displayed the highest specific capacity of 134.36 C/g with 6 phr of GO, whereas PMCoG-1 and PMCoG-3 exhibited the specific capacities of 100.63 and 118.4 C/g having 3 phr and 12 phr GO at a scan rate of 0.003 V/s, respectively. The best electrochemical performance of PMCoG-2 is credited to the synergistic effect of constituents of the composite material.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Department of Chemistry, Hazara University Mansehra, Mansehra 21300, Pakistan;
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.W.); (A.A.-G.)
| | - Wajid Rehman
- Department of Chemistry, Hazara University Mansehra, Mansehra 21300, Pakistan;
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad 45550, Pakistan
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.W.); (A.A.-G.)
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering & Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia;
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering & Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia;
| |
Collapse
|
5
|
Ehsanimehr S, Sonnier R, Najafi P, Ducos F, Badawi M, Formela K, Saeb M, Vahabi H. Layer-by-layer polymer deposited fabrics with superior flame retardancy and electrical conductivity. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|