1
|
Abomuti MA. Chiral acidic molecularly imprinted polymer for enantio-separation of norepinephrine racemate. Chirality 2024; 36:e23645. [PMID: 38384154 DOI: 10.1002/chir.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/23/2024]
Abstract
We are looking into how well a copolymeric material made of poly (maleic acid-co-4-vinylpyridine) cross-linked with divinylbenzene can separate L-norepinephrine (L-NEP) from (±)-NEP. The initial step in this direction was the synthesis and subsequent analysis of L-NEP-maleimide chiral derivative. A 4-vinylpyridine/divinylbenzene combination was copolymerized with the resultant chiral maleimide. After heating the polymer materials in a high-alkaline environment to breakdown the connecting imide bonds, they were acidified in an HCl solution to eliminate the incorporated L-NEP species. Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope were used to examine the imprinted L-NEP-imprinted materials. The manufactured L-NEP-imprinted materials exhibited selectivity characteristics that were over 11 times greater for L-NEP than D-norepinephrine. The highest capacity observed in Langmuir adsorption studies was 170 mg/g at a pH of 7. After optical separation using a column technique, it was determined that the enantiomeric excess levels of D-norepinephrine and L-NEP in the first feeding and subsequent recovery solutions were 95% and 81%, respectively.
Collapse
Affiliation(s)
- May Abdullah Abomuti
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi, Saudi Arabia
| |
Collapse
|
2
|
Alhawiti AS. Design of molecularly imprinted resin material with sulfonic acid functionalization for enantioseparation of (±)-cathine. Chirality 2023; 35:766-778. [PMID: 37227057 DOI: 10.1002/chir.23594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
In the current work, an enantioselective imprinting technique was used to develop a very selective adsorbent for the (+)-cathine ((+)-Cat) enantiomer. The phenolic sulfonamide produced from 2,4-dihydroxybenzenesulfonic acid (HBS) and (+)-Cat ((+)-Cat-HBS) was initially synthesized by triphenylphosphene activation and subsequently involved in condensation polymerization with resorcinol in the presence of formaldehyde under acidic conditions. Alkaline sulfonamide bond-breaking was subsequently employed to separate the (+)-Cat template from the polymer, and the resulting imprinted resin ((+)-CIP) displayed high selectivity for the (+)-Cat, with a capacity of 225 ± 2 mg/g. Studies of selectivity also showed that the (+)-Cat enantiomer was preferred over its counterpart because of the development of configurationally matching receptors. In addition, the produced resin was used for the enantioresolution of (±)-Cat racemate by column method, yielding a loading supernatant solution with an enantiomeric excess of (+)-Cat 50% and a recovery eluant solution with an excess of (-)-Cat 85%.
Collapse
Affiliation(s)
- Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Sun Y, Zhang Y, Hou Y, Gong H, Pang Y, Ge X, Li M. Molecularly imprinted polymers based on calcined rape pollen and deep eutectic solvents for efficient sinapic acid extraction from rapeseed meal extract. Food Chem 2023; 416:135811. [PMID: 36898334 DOI: 10.1016/j.foodchem.2023.135811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Substances that possess hierarchical and interconnected porous features are ideal choices for acting as skeletons to synthesize surface molecularly imprinted polymers (MIPs). In this work, rape pollen, a waste of biological resources, was calcined and a porous mesh material with a high specific surface area was obtained. The cellular material was adopted as a supporting skeleton to synthesize high-performance MIPs (CRPD-MIPs). The CRPD-MIPs presented an ultrathin imprinted layered structure, with an enhanced adsorption capacity for sinapic acid (154 mg g-1) relative to the non-imprinted polymers. The CRPD-MIPs also exhibited good selectivity (IF = 3.24) and a fast kinetic adsorption equilibrium (60 min). This method exhibited a good linear relationship (R2 = 0.9918) from 0.9440 to 29.26 μg mL-1, and the relative recoveries were 87.1-92.3%. The proposed CRPD-MIPs based on hierarchical and interconnected porous calcined rape pollen may be a valid program for the selective extraction of a particular ingredient from complicated actual samples.
Collapse
Affiliation(s)
- Yanhua Sun
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Yange Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Yujiao Hou
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Hui Gong
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Yifei Pang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Xiaoxiao Ge
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Ming Li
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Alatawi RAS. Construction of Amino‐Functionalized Molecularly Imprinted Silica Particles for (±)‐Ofloxacin Chiral Separation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Elsayed NH, Monier M, Almutairi FM, Alotaibi FA, Albalawi AN, Aljohani WA, Abdel-Latif D. Developing surface molecularly imprinted cellulose acetate particles for selective recognition of S-ketoprofen enantiomers. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Ma S, Li F, Tan Z. Recyclable aqueous two-phase system formed by two temperature-responsive polymers for the chiral resolution of mandelic acid enantiomers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Hroboňová K, Vybohová V, Lomenova A, Špačková A, Svitková V. Characterization of kinetic, thermodynamic, and binding properties of l-phenylalanine molecularly imprinted polymer. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|