1
|
Sushma, Sharma S, Ghosh KS. Fluorescence chemosensing and bioimaging of metal ions using schiff base probes working through photo-induced electron transfer (PET). Crit Rev Anal Chem 2024:1-32. [PMID: 39559829 DOI: 10.1080/10408347.2024.2418327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Though metal ions like copper, iron, zinc, etc. are essential, but their dyshomeostasis is associated with several disorders. Therefore, fast, sensitive, and cost-effective monitoring of these cations will have a significant impact. Many recently reported small organic molecules were able to detect a specific metal ion because of certain variations in the electron/charge transfer processes occurring in those molecules after binding with metal ions. In this context, Schiff base molecules were widely used as fluorescence turn-on/turn-off probes for the detection of metal ions like Al3+, Cu2+, Zn2+, Fe3+, Ag+, heavy metal ions, etc. In this article, we have reviewed the recent developments in fluorimetric chemosensing of metal ions by Schiff bases based on the photo-induced electron transfer (PET) process. A variety of examples have been discussed in which PET was used as a cation recognition mechanism. Particular focus is placed on the molecular probes used for sensing, including their design, selectivity, sensitivity, and in some cases their potential bioimaging applications.
Collapse
Affiliation(s)
- Sushma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| | - Shivani Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| |
Collapse
|
2
|
Saleh SM, Ali R, Algreiby A, Alfeneekh B, Ali IAI. A novel organic chromo-fluorogenic optical sensor for detecting chromium ions. Heliyon 2024; 10:e37480. [PMID: 39309270 PMCID: PMC11413675 DOI: 10.1016/j.heliyon.2024.e37480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Sensing trivalent chromium ion (Cr(III)) is widely applied in different areas, such as clinical analysis, marine, environmental monitoring, or even chemical industry applications. Cr(III) has a significant role in the physiological process of human life. It is classified as an essential micronutrient for living organisms. Herein, we developed and designed a novel optical Cr(III) ions sensor film. The investigated sensor has a relatively small dynamic range of 1.24 × 10-3 to 0.5 μM. We report a highly sensitive optical sensor film for Cr(III) ions based on diethyl 3,4-diaminothieno[2,3-b]thiophene-2,5-dicarboxylate (3D) probe. The optical characteristics of the chemical probe exhibit substantial emission at 460 nm under 354 nm excitation. Besides, the interaction of the Cr(III) ions with 3D involves a complex formation with a 2:1 (metal: ligand) ratio, which is convoyed by the main peak enhancement that centered at 460 nm of 3D, and the main peak is red-shifted to 480 nm. The easily discernible fluorescence enhancement effect is a defining characteristic of the complexation reaction between the 3D probe and Cr(III). On the basis of the substantial fluorescence mechanism caused by the formation of a (Cr(III)-3D complex, which inhibits the photo-induced electron transfer (PET) process, the devised optical sensor was proposed. This film exhibits exceptional sensitivity and selectivity due to its notable fluorescence properties, stock shift of less than 106 nm, and detection capabilities at a significantly low detection limit of 0.37 × 10-3 μM. The detection procedure is executed by utilizing a physiological pH medium (pH = 7.4) with a relative standard deviation RSDr (1 %, n = 3). In addition, the 3D sensor demonstrates a high degree of affinity for Cr(III), as determined by the calculation of its binding constant to be 1.40 × 106. We present an impressive optical sensor that is constructed upon a three-dimensional molecule.
Collapse
Affiliation(s)
- Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Azizah Algreiby
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Bayader Alfeneekh
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Ibrahim A I Ali
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Huang Y, Zhang S, Chen S, Chen Y, Cheng L, Dai H, Gao L. Electrochemiluminescence enhanced by molecular engineering linear π-conjugated polymer: An ingenious ECL emitter for the construction of exosome sensing platform. Talanta 2024; 277:126405. [PMID: 38870758 DOI: 10.1016/j.talanta.2024.126405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Linear π-conjugated polymers (LCPs) with π-electron conjugation system have many remarkable optical characteristics such as fluorescence and electrochemiluminescence (ECL). However, the extremely strong interchain interaction and π-π stacking limit the luminescence efficiency. In this work, 1H-1,2,4-triazole-3,5-diamine was chosen as the polymer monomer and reacted with terephthalaldehyde via simple Schiff base condensation to synthesize LCPs. Subsequently, molecular engineering strategy was adopted to construct zirconium-based LCPs (MLCPs), which not only prevented π-π stacking but also ensured that extended π-coupling was maintained in the LCPs, thus effectively promoting charge transport and achieving strong luminescence. Second, the coreactant polyethyleneimine (PEI) was assembled onto the MLCPs (MLCPs@PEI) to further promote the emission of ECL. To further explore the potential of the obtained MLCPs@PEI as emerging ECL emitter, colorectal cancer exosome was chosen as model biomarker, and an innovative ECL ratiometric system based on MLCPs@PEI and luminol was designed to improve the validity and accuracy of the sensors. This research provides a fresh nanoplatform for exosome detection and broadens the application of LCPs in ECL immunoassay.
Collapse
Affiliation(s)
- Yitian Huang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China; College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Sisi Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Yanjie Chen
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Lijun Cheng
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| |
Collapse
|
4
|
Chen M, Chen W, Zhu Q, Yang L, Zhang X, Xie D, Chen J, Wu Y, Zhu Y, Zhu M. α-Cyanostilbene-based Molecule with the Synergistical Mechanisms of AIE, ESIPT and TICT: A New Schiff Base Probe for Selective Detection of Fe 3+ and Reversible Response to HCl/NH 3 Vapor. J Fluoresc 2024:10.1007/s10895-024-03609-9. [PMID: 38520620 DOI: 10.1007/s10895-024-03609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/25/2024]
Abstract
We designed and synthesized a new Schiff base probe, which incorporated the salicylaldehyde-analogue α-cyanostilbene and benzophenone hydrazone by the imine linkage. Its chemical structure was verified by FT-IR, MALDI-TOF-MS, HR-MS and 1H/13C NMR technologies. It could exhibit a red fluorescence based on the synergistical effects of aggregation-induce emission (AIE), excited-state intramolecular proton transfer (ESIPT) and twisted intramolecular charge-transfer (TICT) in the aggregation or solid states. Interestingly, the TLC-based test strip loaded with the target compound showed the reversible fluorescence response to amine/acid vapor and on-site visual fluorescence quenching response to Fe3+. In THF/water mixtures (fw = 90%, 10 µM, pH = 7.4), the detection limit (DL) and the binding constant (Ka) of the developed probe towards Fe3+ were evaluated as 5.50 × 10- 8 M and 1.69 × 105, respectively. The developed probe was successfully applied for the detection of Fe3+ with practical, reliable, and satisfying results.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Wenrong Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Qing Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Liping Yang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Xiazhong Zhang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Donghong Xie
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Jianqiang Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China.
| | - Yuanbin Wu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Yuping Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China.
| |
Collapse
|
5
|
Li M, Li N, Shao F, Wang R, Chen M, Liu YJ, Zhao Y, Li R. Synthesis of a super-low detection limit fluorescent probe for Al 3+ and its application in fluorescence imaging of zebrafish and cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123676. [PMID: 38039642 DOI: 10.1016/j.saa.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
A novel fluorescent probe N'-(2-hydroxybenzylidene)-indole-3-formylhydrazine (JHK) was designed and synthesized based on the condensation reaction of indole-3-formylhydrazine and salicylaldehyde. The probe JHK solution could highly selectively recognize Al3+ by the obvious fluorescence enhancement (288-fold) after adding Al3+. And the probe solution with Al3+ had a very high fluorescence quantum yield (89.29 %). The detection limit was calculated to be 1.135 nM, which was significantly lower than many reported detection limits, indicating that the probe JHK had pretty good sensitivity. The ratio of JHK to Al3+ (1:1) and the sensing mechanism were determined by Job's plot, 1H NMR spectra, FTIR spectra, ESI-MS and Gaussian calculation. The probe solution and medium-speed filter paper were successfully used to make test papers for more convenient detection of Al3+. Furthermore, the probe JHK had been successfully applied to the detection of Al3+ in real water, zebrafish and living cells.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Na Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Feng Shao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Miao Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Yuan-Jun Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Yu Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China.
| | - Rong Li
- Qingdao Women and Children 's Hospital, No. 217 Liaoyang West Road, Qingdao, Shandong 226034, PR China.
| |
Collapse
|
6
|
Ullah Q, Khan SA, Arifuddin M, Mohsin M, Kausar S, Fatema N, Ahmer MF. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al 3+, Fe 3+ and Cr 3+) Using Schiff Base Probes: At a Glance. J Fluoresc 2023:10.1007/s10895-023-03514-7. [PMID: 38133749 DOI: 10.1007/s10895-023-03514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.
Collapse
Affiliation(s)
- Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Salman Ahmad Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammed Arifuddin
- Chemistry Department, Directorate of Distance Education (DDE), Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Md Mohsin
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Samrin Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Nahid Fatema
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh Gurugram University Haryana, Gurugram, India.
| |
Collapse
|
7
|
Kolcu F, Çulhaoğlu S, Kaya İ. Synthesis and investigation of bis(phenyl)fluorene and carbazole appended dipodal Schiff base for fluorescence sensing towards Sn(II) ion and its regioselective polymerization. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
Bhalla P, Bhagat P, Malhotra S. A simple naphthaldehyde based sensor as optical and colorimetric for the detection of Hg2+/Cr3+ in real samples. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Pyrene derived imine functionalized moiety for highly selective colorimetric detection of Cu2+ ion real time sample with supportive DFT studies. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Synthesis and Characterization of a Carbazole-Based Schiff Base Capable of Detection of Al 3+ in Organic/Aqueous Media. J Fluoresc 2022; 32:2097-2106. [PMID: 35915282 DOI: 10.1007/s10895-022-03008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
A new fluorescence probe (L) selectively detecting Al3+ ions was synthesized via the condensation reaction, and characterized using UV-Vis, FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. The limit of detection for Al3+ ions of this synthesized probe was found to be 9.29 × 10-7 M, while the Ka constant value was determined to be 1.64 × 104 M-1. The stoichiometric binding ratio of L-Al3+ was found to be 2:1 using the Job's plot method, and this ratio was also confirmed by 1H-NMR titration and mass spectrometry. The recyclability of the chemosensor was found by the fluorescence method through the addition of EDTA to the L-Al3+ solution. The obtained data showed that the carbazole-based Schiff base acted as an ideal chemosensor for Al3+. Carbazole-based Schiff base as a fluorescent sensor for detection of Al3+ was synthesized and characterized. The association constant (Ka) was calculated to be 1.64 × 104 M-1 and the limit of detection (LOD) value was determined to be 9.29 × 10-7 M. It was determined that th Schiff base was bound to Al3+ ions in 2:1 stoichiometric ratio. In the presence of other competitive metal cations, the selectivity of sensor L to Al3+ was not significantly affected.
Collapse
|
11
|
Khan S, Muhammad M, Al-Saidi HM, Hassanian AA, Alharbi W, Alharbi KH. Synthesis, characterization and applications of schiff base chemosensor for determination of Cu2+ ions. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Yeldir EK, Kaya İ. Synthesis, characterization and investigation of fluorescent Sn2+ probe potential of pyrene-derived monomer and its oligo(azomethine) compound. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Huang S, Zheng L, Zheng S, Guo H, Yang F. First fluorescence sensor for hydrazine ion: An effective “turn-on” detection based on thiophene-cyanodistyrene Schiff-base. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Synthesis and characterization and some properties of conjugated imine bonding polymers containing pyridine and vinyl units. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|