1
|
Emeji IC, Kumi M, Meijboom R. Performance Evaluation of Benzyl Alcohol Oxidation with tert-Butyl Hydroperoxide to Benzaldehyde Using the Response Surface Methodology, Artificial Neural Network, and Adaptive Neuro-Fuzzy Inference System Model. ACS OMEGA 2024; 9:34464-34481. [PMID: 39157154 PMCID: PMC11325411 DOI: 10.1021/acsomega.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024]
Abstract
The adaptive neuro-fuzzy inference system (ANFIS), central composite experimental design (CCD)-response surface methodology (RSM), and artificial neural network (ANN) are used to model the oxidation of benzyl alcohol using the tert-butyl hydroperoxide (TBHP) oxidant to selectively yield benzaldehyde over a mesoporous ceria-zirconia catalyst. Characterization reveals that the produced catalyst has hysteresis loops, a sponge-like structure, and structurally induced reactivity. Three independent variables were taken into consideration while analyzing the ANN, RSM, and ANFIS models: the amount of catalyst (A), reaction temperature (B), and reaction time (C). With the application of optimum conditions, along with a constant (45 mmol) TBHP oxidant amount, (30 mmol) benzyl alcohol amount, and rigorous refluxing of 450 rpm, a maximum optimal benzaldehyde yield of 98.4% was obtained. To examine the acceptability of the models, further sensitivity studies including statistical error functions, analysis of variance (ANOVA) results, and the lack-of-fit test, among others, were employed. The obtained results show that the ANFIS model is the most suited to predicting benzaldehyde yield, followed by RSM. Green chemistry matrix calculations for the reaction reveal lower values of the E-factor (1.57), mass intensity (MI, 2.57), and mass productivity (MP, 38%), which are highly desirable for green and sustainable reactions. Therefore, utilizing a ceria-zirconia catalyst synthesized via the inverse micelle method for the oxidation of benzyl alcohol provides a green and sustainable methodology for the synthesis of benzaldehyde under mild conditions.
Collapse
Affiliation(s)
- Ikenna Chibuzor Emeji
- Faculty
of Science, Department of Chemical Sciences-APK, University of Johannesburg. P.O. Box 524, Auckland Park 2600 Johannesburg 2006, South Africa
| | - Michael Kumi
- CSIR
- Water Research Institute, P.O. Box
M32, Accra, Ghana
| | - Reinout Meijboom
- Faculty
of Science, Department of Chemical Sciences-APK, University of Johannesburg. P.O. Box 524, Auckland Park 2600 Johannesburg 2006, South Africa
| |
Collapse
|
2
|
Wohlgemuth M, Schmidt S, Mayer M, Pickhardt W, Graetz S, Borchardt L. Solid-State Oxidation of Alcohols in Gold-Coated Milling Vessels via Direct Mechanocatalysis. Angew Chem Int Ed Engl 2024; 63:e202405342. [PMID: 38801736 DOI: 10.1002/anie.202405342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
This paper presents a novel approach for the selective oxidation of alcohols to their corresponding aldehydes through direct mechanocatalysis, employing a gold-coated milling vessel as catalyst and air as the oxidation agent. By adjusting milling frequency, media, and duration, high catalytic efficiencies and selectivities are achieved. Remarkably, yields of up to 99 % are obtained for specific substrates, with a turnover number (TON) of 8200 and a turnover frequency (TOF) of 0.77 s-1, surpassing existing alternatives. Confirmation of the catalytic reaction indeed occurring on the milling tool surface was achieved through X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Maximilian Wohlgemuth
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sarah Schmidt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Maike Mayer
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Wilm Pickhardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sven Graetz
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
3
|
Maurya MR, Nandi M, Chaudhary PK, Singh S, Avecilla F, Prasad R, Ghosh K. Catalytic, Antifungal, and Antiproliferative Activity Studies of a New Family of Mononuclear [V IVO]/[V VO 2] Complexes. Inorg Chem 2024; 63:714-729. [PMID: 38150362 DOI: 10.1021/acs.inorgchem.3c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ligands derived from 2-(1-phenylhydrazinyl)pyridine and salicylaldehyde (HL1), 3-methoxysalicylaldehyde (HL2), 5-bromosalicylaldehyde (HL3), and 3,5-di-tert-butylsalicylaldehyde (HL4) react with [VIVO(acac)2] in MeOH followed by aerial oxidation to give [VVO2(L1)] (1), [VVO2(L2)] (2), [VVO2(L3)] (3), and [VVO2(L4)] (4). Complex [VIVO(acac)(L1)] (5) is also isolable from [VIVO(acac)2] and HL1 in dry MeOH. Structures of all complexes were confirmed by single-crystal X-ray and spectroscopic studies. They efficiently catalyze benzyl alcohol and its derivatives' oxidation in the presence of H2O2 to their corresponding aldehydes. Under optimized reaction conditions using 1 as a catalyst precursor, conversion of benzyl alcohol follows the order: 4 (93%) > 2 (90%) > 1 (86%) > 3 (84%) ≈ 5 (84%). These complexes were also evaluated for antifungal and antiproliferative activities. Complex 3 with MIC50 = 16 μg/mL, 4 with MIC50 = 12 μg/mL, and 5 with MIC50 = 16 μg/mL are efficient toward planktonic cells of Candida albicans and Candida tropicalis. On Michigan cancer foundation-7 (MCF-7) cells, they show comparable cytotoxic effects and exhibit IC50 in the 27.3-33.5 μg/mL range, and among these, 4 exhibits the highest cytotoxicity. A similar study on human embryonic kidney cells (HEK293) confirms their less toxicity at lower concentrations (4 to 16 μg/mL) compared to MCF-7.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pankaj Kumar Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
4
|
Chataoui H, Mekkaoui AA, Elmouli H, Bahsis L, Anane H, El Houssame S. A DFT investigation of the catalytic oxidation of benzyl alcohol using graphene oxide. J Mol Model 2023; 29:288. [PMID: 37610432 DOI: 10.1007/s00894-023-05693-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
CONTEXT Metal-free heterogeneous materials have attracted great interest due to their potential to facilitate various organic transformations in line with circular economy and green chemistry principles. Among various 2D materials, graphene oxide (GO) is considered an attractive material for numerous applications in physics, chemistry, biology, material sciences, and catalysis. Furthermore, graphene-based catalysts exhibit good catalytic activity toward the selective oxidation of benzyl alcohol to benzaldehyde or benzoic acid under eco-friendly conditions. In this regard, a theoretical investigation was carried out to study both catalytic oxidation reaction pathways (i.e., benzyl alcohols to aldehyde and to benzoic acid) using GO as an eco-friendly and metal-free catalyst. METHODS In this study, we report a theoretical investigation at the B3LYP/6-31G level to better understand the oxidation of benzyl alcohol using GO as a metal-free catalyst. The possible bond formation was investigated using the global and local reactivity indexes derived from Fukui functions. Furthermore, we performed a non-covalent interaction (NCI) analysis to unveil the stability and the interaction nature between both reagents and GO surface. The effect of the solvent on the oxidation efficiency was also performed and the results indicate that the solvent significantly affects the decrease of reactivity by increasing the activation barriers through oxidation reactions of benzyl alcohol. Additionally, the electron localization function (ELF) analysis was performed for all intermediates showing the ionic nature of the studied epoxide structure of GO and rules out any type of covalent interaction during the oxidation reaction of benzyl alcohol. All these obtained results are in good agreement with experimental observations and reveal that the epoxide functions on the graphene surface promote an excellent catalyst turnover.
Collapse
Affiliation(s)
- Hassan Chataoui
- Laboratoire Des Sciences Des Matériaux, Mathématiques Et Environnement, Faculté Polydisciplinaire de Khouribga, Université Sultan Moulay Slimane, BP 145, 25000, Khouribga, Morocco
| | - Ayoub Abdelkader Mekkaoui
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination Et de Catalyse, Département de Chimie, Faculté Des Sciences Semlalia, Université Cadi Ayyad, BP 2390, 40001, Marrakech, Morocco
| | - Hamid Elmouli
- Laboratoire de Chimie Analytique Et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique Et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique Et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Soufiane El Houssame
- Laboratoire Des Sciences Des Matériaux, Mathématiques Et Environnement, Faculté Polydisciplinaire de Khouribga, Université Sultan Moulay Slimane, BP 145, 25000, Khouribga, Morocco.
| |
Collapse
|
5
|
Aneggi E, Campagnolo F, Segato J, Zuccaccia D, Baratta W, Llorca J, Trovarelli A. Solvent-free selective oxidation of benzyl alcohol using Ru loaded ceria-zirconia catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Qin K, Zang D, Wei Y. Polyoxometalates based compounds for green synthesis of aldehydes and ketones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Transforming Waste Clamshell into Highly Selective Nanostructured Catalysts for Solvent Free Liquid Phase Oxidation of Benzyl Alcohol. Catalysts 2022. [DOI: 10.3390/catal12020155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High yield production of benzaldehyde in the solvent-free oxidation of benzyl alcohol by using green catalysts is highly desirable. In this work, calcium hydroxide derived from waste clamshell was used as low-cost and environmentally friendly catalyst support (CaSUP) for Pd and V nanoparticles. The physicochemical properties of the catalysts were analyzed using X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic oxidation of benzyl alcohol to benzaldehyde was studied in a liquid phase reaction by using H2O2 as an oxidizing agent. The effects of catalyst loading, the molar ratio of hydrogen peroxide to benzyl alcohol, temperature and reaction duration were investigated. In the optimized conditions, Pd nanoparticles supported on clamshell-derived supports displayed excellent catalytic conversion (88%) and selectivity to benzaldehyde (89%). Furthermore, the catalyst can be effectively reused without a significant loss in its activity and selectivity. The high yield and stability can be related to the structural and basic properties of the catalyst. These results provide important insights into the benzyl alcohol oxidation process for industrial applications.
Collapse
|