1
|
Hidalgo M, Railef B, Rodríguez V, Navarro C, Rubio V, Meneses-Pacheco J, Soto-Alarcón S, Kreindl C, Añazco C, Zuñiga L, Porras O. The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells. Redox Biol 2025; 80:103507. [PMID: 39848056 DOI: 10.1016/j.redox.2025.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC). By monitoring cytoplasmic Ca2+ in a microvascular EC model, we compared the calcium responses evoked by three structurally related compounds: caffeic acid phenethyl ester, neochlorogenic acid and caffeic acid. Only CAPE induced rapid and transient calcium responses at nanomolar concentrations together with a gradual increase in cytoplasmic sodium levels, suggesting the activation of a non-selective cationic permeation at the plasma membrane. Electrophysiological as well as pharmacological, and RNA silencing assays confirmed the involvement of TRPV1 in the recognition of CAPE by ECs. Finally, we demonstrated that Ca2+ influx by TRPV1 was necessary for recording CAPE-induced cytoplasmic redox changes, a phenomenon captured in real-time in ECs expressing the HyPer biosensor. Our data depict a molecular mechanism behind the antioxidant effect of CAPE in endothelial cells, connecting the activation of TRPV1 ion channels, cytoplasmic calcium increase, and a reduction of disulfide bonds on a redox biosensor. This phenomenon occurs within seconds to minutes and contributes to a better understanding of the mechanisms underlying the vasodilatory effect of CAPE and other compounds that interact with TRPV1 in the vascular bed.
Collapse
Affiliation(s)
- Miltha Hidalgo
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Bárbara Railef
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Vania Rodríguez
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Carolina Navarro
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Vanessa Rubio
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Jorge Meneses-Pacheco
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| | - Sandra Soto-Alarcón
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile; Nutrition and Dietetics, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, 7500912, Chile.
| | - Christine Kreindl
- Nutrition and Dietetics, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, 7500912, Chile.
| | - Carolina Añazco
- Nutritional Biochemistry Laboratory, Faculty of Science for Health Care, Universidad San Sebastian, Valdivia, Chile.
| | - Leandro Zuñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, Talca, 3460000, Chile.
| | - Omar Porras
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile.
| |
Collapse
|
2
|
Zhuravlev A, Ezeriņa D, Ivanova J, Guriev N, Pugovkina N, Shatrova A, Aksenov N, Messens J, Lyublinskaya O. HyPer as a tool to determine the reductive activity in cellular compartments. Redox Biol 2024; 70:103058. [PMID: 38310683 PMCID: PMC10848024 DOI: 10.1016/j.redox.2024.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
A multitude of cellular metabolic and regulatory processes rely on controlled thiol reduction and oxidation mechanisms. Due to our aerobic environment, research preferentially focuses on oxidation processes, leading to limited tools tailored for investigating cellular reduction. Here, we advocate for repurposing HyPer1, initially designed as a fluorescent probe for H2O2 levels, as a tool to measure the reductive power in various cellular compartments. The response of HyPer1 depends on kinetics between thiol oxidation and reduction in its OxyR sensing domain. Here, we focused on the reduction half-reaction of HyPer1. We showed that HyPer1 primarily relies on Trx/TrxR-mediated reduction in the cytosol and nucleus, characterized by a second order rate constant of 5.8 × 102 M-1s-1. On the other hand, within the mitochondria, HyPer1 is predominantly reduced by glutathione (GSH). The GSH-mediated reduction rate constant is 1.8 M-1s-1. Using human leukemia K-562 cells after a brief oxidative exposure, we quantified the compartmentalized Trx/TrxR and GSH-dependent reductive activity using HyPer1. Notably, the recovery period for mitochondrial HyPer1 was twice as long compared to cytosolic and nuclear HyPer1. After exploring various human cells, we revealed a potent cytosolic Trx/TrxR pathway, particularly pronounced in cancer cell lines such as K-562 and HeLa. In conclusion, our study demonstrates that HyPer1 can be harnessed as a robust tool for assessing compartmentalized reduction activity in cells following oxidative stress.
Collapse
Affiliation(s)
- Andrei Zhuravlev
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Julia Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Nikita Guriev
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Natalia Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Nikolay Aksenov
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
3
|
Ivanova J, Guriev N, Pugovkina N, Lyublinskaya O. Inhibition of thioredoxin reductase activity reduces the antioxidant defense capacity of human pluripotent stem cells under conditions of mild but not severe oxidative stress. Biochem Biophys Res Commun 2023; 642:137-144. [PMID: 36577250 DOI: 10.1016/j.bbrc.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Pro-oxidative shift in redox balance, usually termed as "oxidative stress", can lead to different cell responses depending on its intensity. Excessive accumulation of reactive oxygen species ("oxidative distress") can cause DNA, lipid and protein damage. Physiological oxidative stimulus ("oxidative eustress"), in turn, can favor cell proliferation and differentiation - the processes of paramount importance primarily for stem cells. Functions of antioxidant enzymes in cells is currently a focus of intense research, however the role of different antioxidant pathways in pluripotent cell responses to oxidative distress/eustress is still under investigation. In this study, we assessed the contribution of the thioredoxin reductase (TrxR)-dependent pathways to maintaining the redox homeostasis in human induced pluripotent stem cells and their differentiated progeny cells under basal conditions and under conditions of oxidative stress of varying intensity. Employing the genetically encoded H2O2 biosensor cyto-HyPer and two inhibitors of thioredoxin reductase (auranofin and Tri-1), we show that the reduced activity of TrxR-dependent enzymatic systems leads to the non-cytotoxic disruption of thiol-disulfide metabolism in the cytoplasm of both pluripotent and differentiated cells under basal conditions. Quantifying the cytoplasmic concentrations of peroxide establishing in H2O2-stressed cells, we demonstrate that TrxR-dependent pathways contribute to the antioxidant activity in the cell cytoplasm under conditions of mild but not severe oxidative stress in both cell lines tested. The observed effects may testify about a conservative role of the TrxR-controlled enzymatic systems manifested as a response to physiological redox stimuli rather than a protection against the severe oxidative stress.
Collapse
Affiliation(s)
- Julia Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064, Russia.
| | - Nikita Guriev
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064, Russia; Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya st. 29, St. Petersburg, 195251, Russia
| | - Natalia Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064, Russia
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064, Russia
| |
Collapse
|
4
|
Carlotto N, Robles-Luna G, Nedo A, Wang X, Attorresi A, Caplan J, Lee JY, Kobayashi K. Evidence for reduced plasmodesmata callose accumulation in Nicotiana benthamiana leaves with increased symplastic cell-to-cell communication caused by RNA processing defects of chloroplasts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:58-64. [PMID: 35313145 DOI: 10.1016/j.plaphy.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
RNA processing defects in chloroplasts were previously associated with increased plasmodesmata (PD) permeability. However, the underlying mechanisms for such association are still unknown. To provide insight into this, we silenced the expression of chloroplast-located INCREASED SIZE EXCLUSION LIMIT 2 (ISE2) RNA helicase in Nicotiana benthamiana leaves and determined an increase in PD permeability which is caused by a reduction of PD callose deposition. Moreover, the silencing of two other nuclear genes encoding chloroplastic enzymes involved in RNA processing, RH3, and CLPR2, also increased PD permeability accompanied by reduced callose accumulation at PD. In addition, we quantified the plastidic hydrogen peroxide levels using the chloroplast-targeted fluorescent sensor, HyPer, in ISE2, RH3, and CLPR2 silenced N. benthamiana leaves. The levels of chloroplastic hydrogen peroxide were not correlated with the increased cell-to-cell movement of the marker protein GFP2X. We, therefore, propose that defects in chloroplast RNA metabolism mediate PD gating by suppressing PD callose deposition, and hydrogen peroxide levels in the organelles are not directly linked to this process.
Collapse
Affiliation(s)
- Nicolas Carlotto
- Laboratorio de Agrobiotecnología, Departamento de Fisiología y Biología Molecular y Celular - Instituto de Biodiversidad y Biología Experimental Aplicada, FCEN UBA - CONICET, Ciudad Autónoma de Buenos Aires, C1428, EGA, Argentina
| | - Gabriel Robles-Luna
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA
| | - Alexander Nedo
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA
| | - Xu Wang
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA; Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) -CONICET- Partner Institute of the Max Planck Society, Ciudad Autónoma de Buenos Aires, C1425, FQD, Argentina
| | - Jeffrey Caplan
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA
| | - Jung Y Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA
| | - Ken Kobayashi
- Laboratorio de Agrobiotecnología, Departamento de Fisiología y Biología Molecular y Celular - Instituto de Biodiversidad y Biología Experimental Aplicada, FCEN UBA - CONICET, Ciudad Autónoma de Buenos Aires, C1428, EGA, Argentina.
| |
Collapse
|
5
|
Leyva-Soto A, Alejandra Chavez-Santoscoy R, Porras O, Hidalgo-Ledesma M, Serrano-Medina A, Alejandra Ramírez-Rodríguez A, Alejandra Castillo-Martinez N. Epicatechin and quercetin exhibit in vitro antioxidant effect, improve biochemical parameters related to metabolic syndrome, and decrease cellular genotoxicity in humans. Food Res Int 2021; 142:110101. [PMID: 33773697 DOI: 10.1016/j.foodres.2020.110101] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 12/29/2022]
Abstract
Metabolic syndrome is a condition whose incidence has been increasing around the world. It promotes a metabolic state of chronic systemic inflammation, correlated to cellular stress and genetic mutations, and subsequently with deadly chronic diseases, such as type 2 diabetes mellitus, cardiovascular diseases, and cancer. A randomized placebo-controlled study (n = 156) was conducted to determine the effects of consuming an enriched bread with 0.05% of a 1:1 mixture of (-)-epicatechin and quercetin on anthropometric and biochemical parameters of the participants. As a result, total cholesterol, LDL-cholesterol, total triglycerides, and fasting plasma glucose significantly decreased after three months of daily enriched bread consumption. Nuclear abnormalities in buccal epithelium cells also decreased (15.8 ± 3.2 down to 8.3 ± 1.0), showing a genoprotective effect. The antioxidant properties of these compounds were observed by monitoring changes in the cytoplasmic redox tone of intact Caco-2 cells expressing HyPer, a fluorescent redox biosensor. The combination of (-)-epicatechin and quercetin changes the cytoplasmic redox ambient in living cells and significantly improves biochemical parameters related to metabolic syndrome, and decreases the number of cell abnormalities in buccal epithelium cells of patients.
Collapse
Affiliation(s)
- Aldo Leyva-Soto
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC) - Campus Tijuana, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, 22390 Tijuana, B.C., Mexico
| | - Rocío Alejandra Chavez-Santoscoy
- Escuela de Ingeniería y Ciencias, Centro de Biotecnologia FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico.
| | - Omar Porras
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Miltha Hidalgo-Ledesma
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Aracely Serrano-Medina
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California (UABC) - Campus Tijuana, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, 22390 Tijuana, B.C., Mexico
| | - Ana Alejandra Ramírez-Rodríguez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC) - Campus Tijuana, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, 22390 Tijuana, B.C., Mexico
| | - Nydia Alejandra Castillo-Martinez
- Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California, Blvd Universitario No. 1000, Valle San Pedro, 21500 Tijuana, B.C., Mexico
| |
Collapse
|
6
|
Hidalgo M, Rodríguez V, Kreindl C, Porras O. Biological Redox Impact of Tocopherol Isomers Is Mediated by Fast Cytosolic Calcium Increases in Living Caco-2 Cells. Antioxidants (Basel) 2020; 9:antiox9020155. [PMID: 32075011 PMCID: PMC7070868 DOI: 10.3390/antiox9020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Most of the biological impacts of Vitamin E, including the redox effects, have been raised from studies with α-tocopherol only, despite the fact that tocopherol-containing foods carry mixed tocopherol isomers. Here, we investigated the cellular mechanisms involved in the immediate antioxidant responses evoked by α-, γ- and δ-tocopherol in Caco-2 cells. In order to track the cytosolic redox impact, we performed imaging on cells expressing HyPer, a fluorescent redox biosensor, while cytosolic calcium fluctuations were monitored by means of Fura-2 dye and imaging. With this approach, we could observe fast cellular responses evoked by the addition of α-, γ- and δ-tocopherol at concentrations as low as 2.5 μM. Each isomer induced rapid and consistent increases in cytosolic calcium with fast kinetics, which were affected by chelation of extracellular Ca2+, suggesting that tocopherols promoted a calcium entry upon the contact with the plasma membrane. In terms of redox effects, δ-tocopherol was the only isomer that evoked a significant change in the HyPer signal at 5 μM. By mimicking Ca2+ entry with ionomycin and monensin, a decline in the HyPer signal was induced as well. Finally, by silencing calcium with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), an intracellular Ca2+ chelator, none of the isomers were able to induce redox changes. Altogether, our data indicate that an elevation in cytoplasmic Ca2+ is necessary for the development of a tocopherol-induced antioxidant impact on the cytoplasm of Caco-2 cells reported by HyPer biosensor.
Collapse
|
7
|
Carrasco-Wong I, Hernández C, Jara-Gutiérrez C, Porras O, Casanello P. Human umbilical artery endothelial cells from Large-for-Gestational-Age newborn have increased antioxidant efficiency and gene expression. J Cell Physiol 2019; 234:18571-18586. [PMID: 30937903 DOI: 10.1002/jcp.28494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 11/06/2022]
Abstract
Obesity is a public health problem worldwide, and especially in women in reproductive age where more than one in three have obesity. Maternal obesity is associated with an increased maternal, placental, and newborn oxidative stress, which has been proposed as a central factor in vascular dysfunction in large-for-gestational-age (LGA) newborn. However, cellular and molecular mechanisms behind this effect have not been elucidated. Untreated human umbilical artery endothelial cells (HUAEC) from LGA (LGA-HUAEC) presented higher O2 - levels, superoxide dismutase activity and heme oxygenase 1 messenger RNA (mRNA) levels, paralleled by reduced GSH:GSSG ratio and NRF2 mRNA levels. In response to an oxidative challenge (hydrogen peroxide), only HUAEC from LGA exhibited an enhanced Glutathione Peroxidase 1 (GPX1) expression, as well as a more efficient antioxidant machinery measured by the biosensor probe, HyPer. An open state of chromatin in the TSS region of GPX1 in LGA-HUAEC was evidenced by the DNase-HS assay. Altogether, our data indicate that LGA-HUAEC have an altered cellular and molecular antioxidant system. We propose that a chronic pro-oxidant intrauterine milieu, as evidenced in pregestational obesity, could induce a more efficient antioxidant system in fetal vascular cells, which could be maintained by epigenetic mechanism during postnatal life.
Collapse
Affiliation(s)
- Ivo Carrasco-Wong
- Department of Cellular and Molecular Biology, Cell & Molecular Biology PhD Program, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cherie Hernández
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Jara-Gutiérrez
- Centro de Investigaciones Biomédicas (CIB), Laboratorio de Estrés Oxidativo, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Omar Porras
- Unidad de Nutrición Básica, Instituto de Nutrición y Tecnologí, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Abstract
Understanding the cellular basis of human health and disease requires the spatial resolution of microscopy and the molecular-level details provided by spectroscopy. This review highlights imaging methods at the intersection of microscopy and spectroscopy with applications in cell biology. Imaging methods are divided into three broad categories: fluorescence microscopy, label-free approaches, and imaging tools that can be applied to multiple imaging modalities. Just as these imaging methods allow researchers to address new biological questions, progress in biological sciences will drive the development of new imaging methods. We highlight four topics in cell biology that illustrate the need for new imaging tools: nanoparticle-cell interactions, intracellular redox chemistry, neuroscience, and the increasing use of spheroids and organoids. Overall, our goal is to provide a brief overview of individual imaging methods and highlight recent advances in the use of microscopy for cell biology.
Collapse
Affiliation(s)
- Joshua D Morris
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, Georgia 30043, USA
| | - Christine K Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
9
|
Lyublinskaya OG, Antonov SA, Gorokhovtsev SG, Pugovkina NA, Kornienko JS, Ivanova JS, Shatrova AN, Aksenov ND, Zenin VV, Nikolsky NN. Flow cytometric HyPer-based assay for hydrogen peroxide. Free Radic Biol Med 2018; 128:40-49. [PMID: 29859346 DOI: 10.1016/j.freeradbiomed.2018.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 01/06/2023]
Abstract
HyPer is a genetically encoded fluorogenic sensor for hydrogen peroxide which is generally used for the ratiometric imaging of H2O2 fluxes in living cells. Here, we demonstrate the advantages of HyPer-based ratiometric flow cytometry assay for H2O2, by using K562 and human mesenchymal stem cell lines expressing HyPer. We show that flow cytometry analysis is suitable to detect HyPer response to submicromolar concentrations of extracellularly added H2O2 that is much lower than concentrations addressed previously in the other HyPer-based assays (such as cell imaging or fluorimetry). Suggested technique is also much more sensitive to hydrogen peroxide than the widespread flow cytometry assay exploiting H2O2-reactive dye H2DCFDA and, contrary to the H2DCFDA-based assay, can be employed for the kinetic studies of H2O2 utilization by cells, including measurements of the rate constants of H2O2 removal. In addition, flow cytometry multi-parameter ratiometric measurements enable rapid and high-throughput detection of endogenously generated H2O2 in different subpopulations of HyPer-expressing cells. To sum up, HyPer can be used in multi-parameter flow cytometry studies as a highly sensitive indicator of intracellular H2O2.
Collapse
Affiliation(s)
- O G Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences; Tikhoretsky pr. 4, St. Petersburg 194064, Russia.
| | - S A Antonov
- St. Petersburg State Technological Institute (Technical University); Moskovsky pr. 26, St. Petersburg 190013, Russia
| | - S G Gorokhovtsev
- St. Petersburg State Technological Institute (Technical University); Moskovsky pr. 26, St. Petersburg 190013, Russia
| | - N A Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences; Tikhoretsky pr. 4, St. Petersburg 194064, Russia
| | - Ju S Kornienko
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences; Tikhoretsky pr. 4, St. Petersburg 194064, Russia
| | - Ju S Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences; Tikhoretsky pr. 4, St. Petersburg 194064, Russia
| | - A N Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences; Tikhoretsky pr. 4, St. Petersburg 194064, Russia
| | - N D Aksenov
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences; Tikhoretsky pr. 4, St. Petersburg 194064, Russia
| | - V V Zenin
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences; Tikhoretsky pr. 4, St. Petersburg 194064, Russia
| | - N N Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences; Tikhoretsky pr. 4, St. Petersburg 194064, Russia
| |
Collapse
|