1
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
2
|
de Oliveira ARS, Cruz KJC, Morais JBS, Dos Santos LR, de Sousa Melo SR, Fontenelle LC, Severo JS, Beserra JB, de Sousa TGV, de Freitas ST, de Oliveira EHS, Maia CSC, de Matos Neto EM, de Oliveira FE, Henriques GS, Marreiro DDN. Magnesium, selenium and zinc deficiency compromises antioxidant defense in women with obesity. Biometals 2024:10.1007/s10534-024-00625-x. [PMID: 39160443 DOI: 10.1007/s10534-024-00625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Studies have shown that deficiencies in magnesium, selenium, and zinc in individuals with obesity compromise the endogenous antioxidant defense system. This study aimed to evaluate the impact of mineral deficiency on enzymatic antioxidant defense in women with obesity. The study involved 63 women with obesity (BMI ≥ 35 kg/m2) and 77 eutrophic women (BMI between 18.5 and 24.9 kg/m2). Variables such as fasting glucose, glycated hemoglobin, fasting insulin, and serum lipids were analyzed. Insulin resistance was measured using the homeostasis assessment model (HOMA-IR) and beta cell function using the homeostasis assessment model (HOMA-β). Dietary intake of energy, macronutrients (including magnesium, zinc, and selenium), and plasma, erythrocyte, and urinary concentrations of these minerals were measured and analyzed. Serum cortisol, plasma leptin, plasma thiobarbituric acid reactive substances, and the activity of erythrocyte superoxide dismutase (SOD), erythrocyte glutathione peroxidase (GPX), and erythrocyte catalase were also analyzed. Women with obesity had reduced plasma and erythrocyte concentrations and greater urinary excretion of all minerals compared to normal weight women (p < 0.05). There was a positive association between erythrocyte concentrations of zinc and selenium and the activity of the GPX and SOD enzymes in erythrocytes in women with obesity (p < 0.05), in addition to a positive association between serum insulin and the enzyme GPX, which is dependent on dietary selenium (p < 0.05). Individuals with obesity are deficient in magnesium, selenium, and zinc, which appears to impair the antioxidant defense system and contribute to important metabolic disorders such as oxidative stress in these patients.
Collapse
Affiliation(s)
| | - Kyria Jayanne Clímaco Cruz
- Departament of Nutrition, Campus Senator Helvídio Nunes de Barros, Federal University of Piauí, Picos, Piauí, Brazil
| | | | - Loanne Rocha Dos Santos
- Postgraduate Program in Food and Nutrition, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Juliana Soares Severo
- Postgraduate Program in Food and Nutrition, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Jéssica Batista Beserra
- Postgraduate Program in Food and Nutrition, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zakic T, Kalezic A, Drvendzija Z, Udicki M, Ivkovic Kapicl T, Srdic Galic B, Korac A, Jankovic A, Korac B. Breast Cancer: Mitochondria-Centered Metabolic Alterations in Tumor and Associated Adipose Tissue. Cells 2024; 13:155. [PMID: 38247846 PMCID: PMC10814287 DOI: 10.3390/cells13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The close cooperation between breast cancer and cancer-associated adipose tissue (CAAT) shapes the malignant phenotype, but the role of mitochondrial metabolic reprogramming and obesity in breast cancer remains undecided, especially in premenopausal women. Here, we examined mitochondrial metabolic dynamics in paired biopsies of malignant versus benign breast tumor tissue and CAAT in normal-weight and overweight/obese premenopausal women. Lower protein level of pyruvate dehydrogenase and citrate synthase in malignant tumor tissue indicated decreased carbon flux from glucose into the Krebs cycle, whereas the trend was just the opposite in malignant CAAT. Simultaneously, stimulated lipolysis in CAAT of obese women was followed by upregulated β-oxidation, as well as fatty acid synthesis enzymes in both tumor tissue and CAAT of women with malignant tumors, corroborating their physical association. Further, protein level of electron transport chain complexes was generally increased in tumor tissue and CAAT from women with malignant tumors, respective to obesity. Preserved mitochondrial structure in malignant tumor tissue was also observed. However, mitochondrial DNA copy number and protein levels of PGC-1α were dependent on both malignancy and obesity in tumor tissue and CAAT. In conclusion, metabolic cooperation between breast cancer and CAAT in premenopausal women involves obesity-related, synchronized changes in mitochondrial metabolism.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Zorka Drvendzija
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Mirjana Udicki
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Tatjana Ivkovic Kapicl
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
- Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia;
| | - Biljana Srdic Galic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Aleksandra Korac
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
5
|
Application of Clinical Decision Support System to Assist Breast Cancer Patients with Lifestyle Modifications during the COVID-19 Pandemic: A Randomised Controlled Trial. Nutrients 2021; 13:nu13062115. [PMID: 34203025 PMCID: PMC8235424 DOI: 10.3390/nu13062115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Clinical decision support systems (CDSS) are data aggregation tools based on computer technology that assist clinicians to promote healthy weight management and prevention of cardiovascular diseases. We carried out a randomised controlled 3-month trial to implement lifestyle modifications in breast cancer (BC) patients by means of CDSS during the COVID-19 pandemic. In total, 55 BC women at stages I-IIIA were enrolled. They were randomly assigned either to Control group, receiving general lifestyle advice (n = 28) or the CDSS group (n = 27), to whom the CDSS provided personalised dietary plans based on the Mediterranean diet (MD) together with physical activity guidelines. Food data, anthropometry, blood markers and quality of life were evaluated. At 3 months, higher adherence to MD was recorded in the CDSS group, accompanied by lower body weight (kg) and body fat mass percentage compared to control (p < 0.001). In the CDSS arm, global health/quality of life was significantly improved at the trial endpoint (p < 0.05). Fasting blood glucose and lipid levels (i.e., cholesterol, LDL, triacylglycerols) of the CDSS arm remained unchanged (p > 0.05) but were elevated in the control arm at 3 months (p < 0.05). In conclusion, CDSS could be a promising tool to assist BC patients with lifestyle modifications during the COVID-19 pandemic.
Collapse
|
6
|
Kalezic A, Udicki M, Srdic Galic B, Aleksic M, Korac A, Jankovic A, Korac B. Tissue-Specific Warburg Effect in Breast Cancer and Cancer-Associated Adipose Tissue-Relationship between AMPK and Glycolysis. Cancers (Basel) 2021; 13:cancers13112731. [PMID: 34073074 PMCID: PMC8198826 DOI: 10.3390/cancers13112731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Specific metabolic phenotypes of breast cancer result from local interactions such as cancer-adipocyte cross-talk and systemic metabolic influences such as obesity. Here we examined key regulatory enzymes involved in glucose metabolism in breast cancer tissue and cancer-associated adipose tissue of normal-weight and overweight/obese premenopausal women in comparison to benign breast tumor tissue and adipose tissue of weight-matched women. We show a simultaneous increase in 5′-AMP-activated protein kinase (AMPK) protein expression with glucose utilization favoring glycolysis and pentose phosphate pathway in breast cancer tissue. In parallel, we show an increased AMPK protein expression with glucose utilization favoring the pentose phosphate pathway in cancer-associated adipose tissue. Moreover, specific features of cancer tissue glycolysis and glycogen metabolism differ between normal-weight and overweight/obese women. The results suggest context-dependent induction of tissue-specific Warburg effect in breast cancer and cancer-associated adipose tissue. Abstract Typical features of the breast malignant phenotype rely on metabolic reprogramming of cancer cells and their interaction with surrounding adipocytes. Obesity is strongly associated with breast cancer mortality, yet the effects of obesity on metabolic reprogramming of cancer and cancer-associated adipose tissue remain largely unknown. Paired biopsies of breast tumor tissue and adipose tissue from premenopausal women were divided according to pathohistological analyses and body mass index on normal-weight and overweight/obese with benign or malignant tumors. We investigated the protein expression of key regulatory enzymes of glycolysis, pentose phosphate pathway (PPP), and glycogen synthesis. Breast cancer tissue showed a simultaneous increase in 5′-AMP-activated protein kinase (AMPK) protein expression with typical features of the Warburg effect, including hexokinase 2 (HK 2) overexpression and its association with mitochondrial voltage-dependent anion-selective channel protein 1, associated with an overexpression of rate-limiting enzymes of glycolysis (phosphofructokinase 1—PFK-1) and pentose phosphate pathway (glucose-6-phosphate dehydrogenase—G6PDH). In parallel, cancer-associated adipose tissue showed increased AMPK protein expression with overexpression of HK 2 and G6PDH in line with increased PPP activity. Moreover, important obesity-associated differences in glucose metabolism were observed in breast cancer tissue showing prominent glycogen deposition and higher glycogen synthase kinase-3 protein expression in normal-weight women and higher PFK-1 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein expression in overweight/obese women. In conclusion, metabolic reprogramming of glycolysis contributes to tissue-specific Warburg effect in breast cancer and cancer-associated adipose tissue.
Collapse
Affiliation(s)
- Andjelika Kalezic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.K.); (A.J.)
| | - Mirjana Udicki
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.U.); (B.S.G.)
| | - Biljana Srdic Galic
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.U.); (B.S.G.)
| | - Marija Aleksic
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (A.K.)
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (A.K.)
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.K.); (A.J.)
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.K.); (A.J.)
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (A.K.)
- Correspondence: ; Tel.: +3-811-1207-8307
| |
Collapse
|