1
|
Story ME, Ferris LK, Mathers AR. Resident memory T cells in dirty mice suppress innate cell activation and infiltration into the skin following stimulation with alarmins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602963. [PMID: 39071349 PMCID: PMC11275811 DOI: 10.1101/2024.07.11.602963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Trm cells are sequestered at barrier tissues as a swift first line defense against peripheral reinfections in both antigen dependent and antigen independent bystander modes. Trm cells are also capable of mediating autoimmune diseases, such as psoriasis, wherein autoreactive Trm cells are aberrantly activated. To quickly combat infections, activated Trm cells can stimulate the influx and activation of memory T cells and innate immune cells. However, there is significant heterogeneity in the inflammatory responses that Trm cell populations can induce, specifically in the activation of the innate profile. Most studies to date have utilized a reductionist approach to examine single Trm populations, specific pathogens, and defined tissues. Herein, we adopted a more holistic approach utilizing barrier-free 'dirty' mice to profile activated innate cells attracted to the skin in the presence of quiescent cutaneous Trm cells. Notably, dirty mice are a more human predictive model due to having a diverse microbial experience that leads to the development of a complete complement of Trm cells in the skin. We demonstrate that in the dirty mouse model mice have a significant reduction in cutaneous neutrophils and monocytes compared to SPF mice following local treatment with two separate innate stimuli. These findings reveal that cutaneous Trm cells have the capacity to temper the innate immune response and further substantiate the implication that Trm cells are heterogenous in their functions depending in large part on their tissue residency. However, in an autoimmune microenvironment Trm cells are capable of recruiting innate cells to the site of an exposure to a damage-associated molecular pattern. Likely due to the imbalance of IL-17 and IFN-γ.
Collapse
Affiliation(s)
- Meaghan E. Story
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura K. Ferris
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
2
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Chowdhury FA, Colussi N, Sharma M, Wood KC, Xu JZ, Freeman BA, Schopfer FJ, Straub AC. Fatty acid nitroalkenes - Multi-target agents for the treatment of sickle cell disease. Redox Biol 2023; 68:102941. [PMID: 37907055 PMCID: PMC10632539 DOI: 10.1016/j.redox.2023.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Sickle cell disease (SCD) is a hereditary hematological disease with high morbidity and mortality rates worldwide. Despite being monogenic, SCD patients display a plethora of disease-associated complications including anemia, oxidative stress, sterile inflammation, vaso-occlusive crisis-related pain, and vasculopathy, all of which contribute to multiorgan dysfunction and failure. Over the past decade, numerous small molecule drugs, biologics, and gene-based interventions have been evaluated; however, only four disease-modifying drug therapies are presently FDA approved. Barriers regarding effectiveness, accessibility, affordability, tolerance, and compliance of the current polypharmacy-based disease-management approaches are challenging. As such, there is an unmet pharmacological need for safer, more efficacious, and logistically accessible treatment options for SCD patients. Herein, we evaluate the potential of small molecule nitroalkenes such as nitro-fatty acid (NO2-FA) as a therapy for SCD. These agents are electrophilic and exert anti-inflammatory and tissue repair effects through an ability to transiently post-translationally bind to and modify transcription factors, pro-inflammatory enzymes and cell signaling mediators. Preclinical and clinical studies affirm safety of the drug class and a murine model of SCD reveals protection against inflammation, fibrosis, and vascular dysfunction. Despite protective cardiac, renal, pulmonary, and central nervous system effects of nitroalkenes, they have not previously been considered as therapy for SCD. We highlight the pathways targeted by this drug class, which can potentially prevent the end-organ damage associated with SCD and contrast their prospective therapeutic benefits for SCD as opposed to current polypharmacy approaches.
Collapse
Affiliation(s)
- Fabliha A Chowdhury
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole Colussi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Malini Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Z Xu
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA, USA.
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Nitro-oleic acid regulates T cell activation through post-translational modification of calcineurin. Proc Natl Acad Sci U S A 2023; 120:e2208924120. [PMID: 36652486 PMCID: PMC9942794 DOI: 10.1073/pnas.2208924120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nitro-fatty acids (NO2-FAs) are unsaturated fatty acid nitration products that exhibit anti-inflammatory actions in experimental mouse models of autoimmune and allergic diseases. These electrophilic molecules interfere with intracellular signaling pathways by reversible post-translational modification of nucleophilic amino-acid residues. Several regulatory proteins have been identified as targets of NO2-FAs, modifying their activity and promoting gene expression changes that result in anti-inflammatory effects. Herein, we report the effects of nitro-oleic acid (NO2-OA) on pro-inflammatory T cell functions, showing that 9- and 10-NOA, but not their oleic acid precursor, decrease T cell proliferation, expression of activation markers CD25 and CD71 on the plasma membrane, and IL-2, IL-4, and IFN-γ cytokine gene expressions. Moreover, we have found that NO2-OA inhibits the transcriptional activity of nuclear factor of activated T cells (NFAT) and that this inhibition takes place through the regulation of the phosphatase activity of calcineurin (CaN), hindering NFAT dephosphorylation, and nuclear translocation in activated T cells. Finally, using mass spectrometry-based approaches, we have found that NO2-OA nitroalkylates CaNA on four Cys (Cys129, 228, 266, and 372), of which only nitroalkylation on Cys372 was of importance for the regulation of CaN phosphatase activity in cells, disturbing functional CaNA/CaNB heterodimer formation. These results provide evidence for an additional mechanism by which NO2-FAs exert their anti-inflammatory actions, pointing to their potential as therapeutic bioactive lipids for the modulation of harmful T cell-mediated immune responses.
Collapse
|
5
|
Nitro Fatty Acids (NO 2-FAs): An Emerging Class of Bioactive Fatty Acids. Molecules 2021; 26:molecules26247536. [PMID: 34946618 PMCID: PMC8708353 DOI: 10.3390/molecules26247536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Unsaturated nitro fatty acids (NO2-FAs) constitute a category of molecules that may be formed endogenously by the reaction of unsaturated fatty acids (UFAs) with secondary species of nitrogen monoxide and nitrite anions. The warhead of NO2-FAs is a nitroalkene moiety, which is a potent Michael acceptor and can undergo nucleophilic attack from thiol groups of biologically relevant proteins, showcasing the value of these molecules regarding their therapeutic potential against many diseases. In general, NO2-FAs inhibit nuclear factorκ-B (NF-κB), and simultaneously they activate nuclear factor (erythroid derived)-like 2 (Nrf2), which activates an antioxidant signaling pathway. NO2-FAs can be synthesized not only endogenously in the organism, but in a synthetic laboratory as well, either by a step-by-step synthesis or by a direct nitration of UFAs. The step-by-step synthesis requires specific precursor compounds and is in position to afford the desired NO2-FAs with a certain position of the nitro group. On the contrary, the direct nitration of UFAs is not a selective methodology; thus, it affords a mixture of all possible nitro isomers.
Collapse
|
6
|
Fang MY, Huang KH, Tu WJ, Chen YT, Pan PY, Hsiao WC, Ke YY, Tsou LK, Zhang MM. Chemoproteomic profiling reveals cellular targets of nitro-fatty acids. Redox Biol 2021; 46:102126. [PMID: 34509914 PMCID: PMC8441202 DOI: 10.1016/j.redox.2021.102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023] Open
Abstract
Nitro-fatty acids are a class of endogenous electrophilic lipid mediators with anti-inflammatory and cytoprotective effects in a wide range of inflammatory and fibrotic disease models. While these beneficial biological effects of nitro-fatty acids are mainly attributed to their ability to form covalent adducts with proteins, only a small number of proteins are known to be nitro-alkylated and the scope of protein nitro-alkylation remains undetermined. Here we describe the synthesis and application of a clickable nitro-fatty acid probe for the detection and first global identification of mammalian proteins that are susceptible to nitro-alkylation. 184 high confidence nitro-alkylated proteins were identified in THP1 macrophages, majority of which are novel targets of nitro-fatty acids, including extended synaptotagmin 2 (ESYT2), signal transducer and activator of transcription 3 (STAT3), toll-like receptor 2 (TLR2), retinoid X receptor alpha (RXRα) and glucocorticoid receptor (NR3C1). In particular, we showed that 9-nitro-oleate covalently modified and inhibited dexamethasone binding to NR3C1. Bioinformatic analyses revealed that nitro-alkylated proteins are highly enriched in endoplasmic reticulum and transmembrane proteins, and are overrepresented in lipid metabolism and transport pathways. This study significantly expands the scope of protein substrates targeted by nitro-fatty acids in living cells and provides a useful resource towards understanding the pleiotropic biological roles of nitro-fatty acids as signaling molecules or as multi-target therapeutic agents.
Collapse
Affiliation(s)
- Ming-Yu Fang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Kuan-Hsun Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Wei-Ju Tu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Pei-Yun Pan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Wan-Chi Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| |
Collapse
|
7
|
Zatloukalová M, Jedinák L, Riman D, Franková J, Novák D, Cytryniak A, Nazaruk E, Bilewicz R, Vrba J, Papoušková B, Kabeláč M, Vacek J. Cubosomal lipid formulation of nitroalkene fatty acids: Preparation, stability and biological effects. Redox Biol 2021; 46:102097. [PMID: 34418599 PMCID: PMC8385161 DOI: 10.1016/j.redox.2021.102097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Lipid nitroalkenes – nitro-fatty acids (NO2–FAs) are formed in vivo via the interaction of reactive nitrogen species with unsaturated fatty acids. The resulting electrophilic NO2–FAs play an important role in redox homeostasis and cellular stress response. This study investigated the physicochemical properties and reactivity of two NO2–FAs: 9/10-nitrooleic acid (1) and its newly prepared 1-monoacyl ester, (E)-2,3-hydroxypropyl 9/10-nitrooctadec-9-enoate (2), both synthesized by a direct radical nitration approach. Compounds 1 and 2 were investigated in an aqueous medium and after incorporation into lipid nanoparticles prepared from 1-monoolein, cubosomes 1@CUB and 2@CUB. Using an electrochemical analysis and LC-MS, free 1 and 2 were found to be unstable under acidic conditions, and their degradation occurred in an aqueous environment within a few minutes or hours. This degradation was associated with the production of the NO radical, as confirmed by fluorescence assay. In contrast, preparations 1@CUB and 2@CUB exhibited a significant increase in the stability of the loaded 1 and 2 up to several days to weeks. In addition to experimental data, density functional theory-based calculation results on the electronic structure and structural variability (open and closed configuration) of 1 and 2 were obtained. Finally, experiments with a human HaCaT keratinocyte cell line demonstrated the ability of 1@CUB and 2@CUB to penetrate through the cytoplasmic membrane and modulate cellular pathways, which was exemplified by the Keap1 protein level monitoring. Free 1 and 2 and the cubosomes prepared from them showed cytotoxic effect on HaCaT cells with IC50 values ranging from 1 to 8 μM after 24 h. The further development of cubosomal preparations with embedded electrophilic NO2–FAs may not only contribute to the field of fundamental research, but also to their application using an optimized lipid delivery vehicle. Nitro-fatty acids (NO2–FAs) are bioactive electrophiles and new drug candidates. The study focused on endogenous NO2-oleic acid and its glycerol ester. Cubosomes are lipid nanoparticles stabilizing the incorporated NO2–FAs. Applicability of NO2-FA-loaded cubosomes was tested on human HaCaT keratinocytes.
Collapse
Affiliation(s)
- Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Lukáš Jedinák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Daniel Riman
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Jana Franková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - David Novák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Adrianna Cytryniak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Barbora Papoušková
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Martin Kabeláč
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Kralovopolská 135, Brno, 612 65, Czech Republic.
| |
Collapse
|
8
|
Braumann S, Schumacher W, Im NG, Nettersheim FS, Mehrkens D, Bokredenghel S, Hof A, Nies RJ, Adler C, Winkels H, Knöll R, Freeman BA, Rudolph V, Klinke A, Adam M, Baldus S, Mollenhauer M, Geißen S. Nitro-Oleic Acid (NO 2-OA) Improves Systolic Function in Dilated Cardiomyopathy by Attenuating Myocardial Fibrosis. Int J Mol Sci 2021; 22:9052. [PMID: 34445757 PMCID: PMC8396484 DOI: 10.3390/ijms22169052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nitro-oleic acid (NO2-OA), a nitric oxide (NO)- and nitrite (NO2-)-derived electrophilic fatty acid metabolite, displays anti-inflammatory and anti-fibrotic signaling actions and therapeutic benefit in murine models of ischemia-reperfusion, atrial fibrillation, and pulmonary hypertension. Muscle LIM protein-deficient mice (Mlp-/-) develop dilated cardiomyopathy (DCM), characterized by impaired left ventricular function and increased ventricular fibrosis at the age of 8 weeks. This study investigated the effects of NO2-OA on cardiac function in Mlp-/- mice both in vivo and in vitro. Mlp-/- mice were treated with NO2-OA or vehicle for 4 weeks via subcutaneous osmotic minipumps. Wildtype (WT) littermates treated with vehicle served as controls. Mlp-/- mice exhibited enhanced TGFβ signalling, fibrosis and severely reduced left ventricular systolic function. NO2-OA treatment attenuated interstitial myocardial fibrosis and substantially improved left ventricular systolic function in Mlp-/- mice. In vitro studies of TGFβ-stimulated primary cardiac fibroblasts further revealed that the anti-fibrotic effects of NO2-OA rely on its capability to attenuate fibroblast to myofibroblast transdifferentiation by inhibiting phosphorylation of TGFβ downstream targets. In conclusion, we demonstrate a substantial therapeutic benefit of NO2-OA in a murine model of DCM, mediated by interfering with endogenously activated TGFβ signaling.
Collapse
Affiliation(s)
- Simon Braumann
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Wibke Schumacher
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Nam Gyu Im
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Dennis Mehrkens
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Senai Bokredenghel
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Alexander Hof
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Richard Julius Nies
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Christoph Adler
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, 17177 Stockholm, Sweden;
- Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43150 Mölndal, Sweden
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Volker Rudolph
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany;
| | - Anna Klinke
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany;
| | - Matti Adam
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| |
Collapse
|