1
|
Fischer C, Schreiber Y, Nitsch R, Vogt J, Thomas D, Geisslinger G, Tegeder I. Lysophosphatidic Acid Receptors LPAR5 and LPAR2 Inversely Control Hydroxychloroquine-Evoked Itch and Scratching in Mice. Int J Mol Sci 2024; 25:8177. [PMID: 39125747 PMCID: PMC11312285 DOI: 10.3390/ijms25158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lysophosphatidic acids (LPAs) evoke nociception and itch in mice and humans. In this study, we assessed the signaling paths. Hydroxychloroquine was injected intradermally to evoke itch in mice, which evoked an increase of LPAs in the skin and in the thalamus, suggesting that peripheral and central LPA receptors (LPARs) were involved in HCQ-evoked pruriception. To unravel the signaling paths, we assessed the localization of candidate genes and itching behavior in knockout models addressing LPAR5, LPAR2, autotaxin/ENPP2 and the lysophospholipid phosphatases, as well as the plasticity-related genes Prg1/LPPR4 and Prg2/LPPR3. LacZ reporter studies and RNAscope revealed LPAR5 in neurons of the dorsal root ganglia (DRGs) and in skin keratinocytes, LPAR2 in cortical and thalamic neurons, and Prg1 in neuronal structures of the dorsal horn, thalamus and SSC. HCQ-evoked scratching behavior was reduced in sensory neuron-specific Advillin-LPAR5-/- mice (peripheral) but increased in LPAR2-/- and Prg1-/- mice (central), and it was not affected by deficiency of glial autotaxin (GFAP-ENPP2-/-) or Prg2 (PRG2-/-). Heat and mechanical nociception were not affected by any of the genotypes. The behavior suggested that HCQ-mediated itch involves the activation of peripheral LPAR5, which was supported by reduced itch upon treatment with an LPAR5 antagonist and autotaxin inhibitor. Further, HCQ-evoked calcium fluxes were reduced in primary sensory neurons of Advillin-LPAR5-/- mice. The results suggest that LPA-mediated itch is primarily mediated via peripheral LPAR5, suggesting that a topical LPAR5 blocker might suppress "non-histaminergic" itch.
Collapse
Affiliation(s)
- Caroline Fischer
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Robert Nitsch
- Institute for Translational Neuroscience, Medical Faculty, WWU Münster, 48149 Münster, Germany;
| | - Johannes Vogt
- Department of Molecular and Translational Neurosciences, Institute for Anatomy and Center of Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster for Aging associated Diseases (CECAD), University of Cologne, 50923 Köln, Germany;
| | - Dominique Thomas
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Gerd Geisslinger
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
- Fraunhofer Cluster of Excellence of Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| |
Collapse
|
2
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
3
|
Vogel A, Ueberbach T, Wilken-Schmitz A, Hahnefeld L, Franck L, Weyer MP, Jungenitz T, Schmid T, Buchmann G, Freudenberg F, Brandes RP, Gurke R, Schwarzacher SW, Geisslinger G, Mittmann T, Tegeder I. Repetitive and compulsive behavior after Early-Life-Pain associated with reduced long-chain sphingolipid species. Cell Biosci 2023; 13:155. [PMID: 37635256 PMCID: PMC10463951 DOI: 10.1186/s13578-023-01106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.
Collapse
Affiliation(s)
- Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Timo Ueberbach
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Luisa Franck
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Partner Site Frankfurt, German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Giulia Buchmann
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University Hospital, Frankfurt, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
4
|
Valek L, Tran BN, Tegeder I. Cold avoidance and heat pain hypersensitivity in neuronal nucleoredoxin knockout mice. Free Radic Biol Med 2022; 192:84-97. [PMID: 36126861 DOI: 10.1016/j.freeradbiomed.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Nucleoredoxin is a thioredoxin-like oxidoreductase that mainly acts as oxidase and thereby regulates calcium calmodulin kinase Camk2a, an effector of nitric oxide mediated synaptic potentiation and nociceptive sensitization. We asked here if and how NXN affects thermal sensation and nociception in mice using pan-neuronal NXN deletion driven by Nestin-Cre, and sensory neuron specific deletion driven by Advillin-Cre. In a thermal gradient ring, where mice can freely choose the temperature of well-being, Nestin-NXN-/- mice avoided unpleasant cold temperatures. In neuropathic and inflammatory nociceptive models, Nestin-NXN-/- and Advillin-NXN-/- mice displayed subtle phenotypes of heightened heat nociception. Abnormal thermal in vivo responses were associated with heightened calcium influx upon stimulation of transient receptor channels, with heightened oxygen consumption upon disruption of the mitochondrial membrane potential and with higher density of neurite trees of primary sensory neurons of the dorsal root ganglia in cultures. The data suggest that loss of NXN's balancing redox functions leads to maladaptive changes in sensory neurons that manifest in vivo as polyneuropathy-like abnormal cold sensitivity and heat "pain".
Collapse
Affiliation(s)
- Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University, Faculty of Medicine, Frankfurt, Germany
| | - Bao Ngoc Tran
- Institute of Clinical Pharmacology, Goethe-University, Faculty of Medicine, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
5
|
Idelfonso-García OG, Alarcón-Sánchez BR, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Villa-Treviño S, Muriel P, Serrano H, Pérez-Carreón JI, Arellanes-Robledo J. Is Nucleoredoxin a Master Regulator of Cellular Redox Homeostasis? Its Implication in Different Pathologies. Antioxidants (Basel) 2022; 11:antiox11040670. [PMID: 35453355 PMCID: PMC9030443 DOI: 10.3390/antiox11040670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Nucleoredoxin (NXN), an oxidoreductase enzyme, contributes to cellular redox homeostasis by regulating different signaling pathways in a redox-dependent manner. By interacting with seven proteins so far, namely disheveled (DVL), protein phosphatase 2A (PP2A), phosphofructokinase-1 (PFK1), translocation protein SEC63 homolog (SEC63), myeloid differentiation primary response gene-88 (MYD88), flightless-I (FLII), and calcium/calmodulin-dependent protein kinase II type alpha (CAMK2A), NXN is involved in the regulation of several key cellular processes, including proliferation, organogenesis, cell cycle progression, glycolysis, innate immunity and inflammation, motility, contraction, protein transport into the endoplasmic reticulum, neuronal plasticity, among others; as a result, NXN has been implicated in different pathologies, such as cancer, alcoholic and polycystic liver disease, liver fibrogenesis, obesity, Robinow syndrome, diabetes mellitus, Alzheimer’s disease, and retinitis pigmentosa. Together, this evidence places NXN as a strong candidate to be a master redox regulator of cell physiology and as the hub of different redox-sensitive signaling pathways and associated pathologies. This review summarizes and discusses the current insights on NXN-dependent redox regulation and its implication in different pathologies.
Collapse
Affiliation(s)
- Osiris Germán Idelfonso-García
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City 09340, Mexico;
| | - Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Verónica Rocío Vásquez-Garzón
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, ‘Benito Juárez’ Autonomous University of Oaxaca–UABJO, Oaxaca 68020, Mexico; (V.R.V.-G.); (R.B.-H.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, ‘Benito Juárez’ Autonomous University of Oaxaca–UABJO, Oaxaca 68020, Mexico; (V.R.V.-G.); (R.B.-H.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Héctor Serrano
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City 09340, Mexico;
| | - Julio Isael Pérez-Carreón
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
- Correspondence: ; Tel.: +52-55-5350-1900 (ext. 1218)
| |
Collapse
|
6
|
Trehalose Reduces Nerve Injury Induced Nociception in Mice but Negatively Affects Alertness. Nutrients 2021; 13:nu13092953. [PMID: 34578829 PMCID: PMC8469914 DOI: 10.3390/nu13092953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer’s disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice. Therefore, we here assessed the effects of continuous trehalose administration via drinking water using the mouse Spared Nerve Injury model of neuropathic pain. Trehalose had no effect on drinking, feeding, voluntary wheel running, motor coordination, locomotion, and open field, elevated plus maze, and Barnes Maze behavior, showing that it was well tolerated. However, trehalose reduced nerve injury-evoked nociceptive mechanical and thermal hypersensitivity as compared to vehicle. Trehalose had no effect on calcium currents in primary somatosensory neurons, pointing to central mechanisms of the antinociceptive effects. In IntelliCages, trehalose-treated mice showed reduced activity, in particular, a low frequency of nosepokes, which was associated with a reduced proportion of correct trials and flat learning curves in place preference learning tasks. Mice failed to switch corner preferences and stuck to spontaneously preferred corners. The behavior in IntelliCages is suggestive of sedative effects as a “side effect” of a continuous protracted trehalose treatment, leading to impairment of learning flexibility. Hence, trehalose diet supplements might reduce chronic pain but likely at the expense of alertness.
Collapse
|