1
|
Sasuclark AR, Watanabe M, Roshto K, Kilonzo VW, Zhang Y, Pitts MW. Selenium deficiency impedes maturation of parvalbumin interneurons, perineuronal nets, and neural network activity. Redox Biol 2025; 81:103548. [PMID: 39983343 DOI: 10.1016/j.redox.2025.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Selenoproteins are fundamental players in redox signaling that are essential for proper brain development and function. They are indispensable for the vitality of GABAergic parvalbumin-expressing interneurons (PVIs), a cell type characterized by fast-spiking activity and heightened rates of metabolism. During development, PVIs are preferentially encapsulated by specialized extracellular matrix structures, termed perineuronal nets (PNNs), which serve to stabilize synaptic structure and act as protective barriers against redox insults. Consequently, alterations in PVIs and PNNs are well chronicled in neuropsychiatric disease, and evidence from animal models indicates that redox imbalance during adolescence impedes their maturation. Herein, we examined the influence of selenium on maturation of neural network structure and activity in primary cortical cultures. Cultures grown in selenium-deficient media exhibited reduced antioxidant activity, impaired PNN formation, and decreased synaptic input onto PVIs at 28 days in vitro, which coincided with increased oxidative stress. Parallel studies to monitor longitudinal maturation of in vitro electrophysiological activity were conducted using microelectrode arrays (MEA). Selenium content affected the electrophysiological profile of developing cultures, as selenium-deficient cultures exhibited impairments in long-term potentiation in conjunction with reduced spike counts for both network bursts and in response to stimulation. Finally, similar PNN deficits were observed in the cortex of mice raised on a selenium-deficient diet, providing corroborative evidence for the importance of selenium in PNN development. In sum, these findings show the vital role of selenium for the development of GABAergic inhibitory circuits.
Collapse
Affiliation(s)
- Alexandru R Sasuclark
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Marissa Watanabe
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Kai Roshto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Victor W Kilonzo
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Yiqiang Zhang
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA; Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
2
|
Wu Y, Pei J, Xu Y, Yu F, Xu S. Selenium: 48-year journey of global clinical trials. Mol Cell Biochem 2025:10.1007/s11010-024-05202-x. [PMID: 39755855 DOI: 10.1007/s11010-024-05202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Selenium, an essential trace mineral for health, has seen a rise in clinical trials over the past nearly 5 decades. Our aim here is to provide a comprehensive and concise overview of selenium clinical trials from 1976 to 2023. Overall, the evolution of selenium clinical trials over 48 years has advanced through phases of emergence, prosperity, and either stability or transition. The USA plays pivotal roles in establishing large research clusters and fostering strong collaborative ties of selenium clinical trials. Low-selenium levels are noted in a higher proportion of selenium observational trials, while selenium intervention trials are delineated by nine key functional classifications. The emphasis in intervention trials is that selenium product development should be on conducting clinical trials in diseases with higher efficacy, such as those involving antioxidant and endocrine and metabolic disease. Moreover, inorganic forms such as sodium selenite and semi-organic forms like selenized yeast were recognized as primary sources of selenium, while nano-selenium has emerged as a new selenium source in clinical treatments. Selenium is mainly consumed through tablets and oral administration, with a recommended upper limit of 200 µg per day for managing most diseases. In addition, genes encoding selenoproteins or factors of relevance for selenium metabolism, inflammation, and immunity, which have a higher number of records in all trials, are poised to steer future investigations into functional mechanisms of selenium. We believe this review will offer fresh perspectives on selenium clinical trials and identify potential avenues for future selenium research.
Collapse
Affiliation(s)
- Yikun Wu
- Guizhou University Medical College, Guizhou University, Guiyang, 550025, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jun Pei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400015, China
| | - Yuangao Xu
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Fuxun Yu
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Shuxiong Xu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
3
|
Laugwitz L, Buchert R, Olguín P, Estiar MA, Atanasova M, Jr WM, Enssle J, Marsden B, Avilés J, González-Gutiérrez A, Candia N, Fabiano M, Morlot S, Peralta S, Groh A, Schillinger C, Kuehn C, Sofan L, Sturm M, Bender B, Tomaselli PJ, Diebold U, Mueller AJ, Spranger S, Fuchs M, Freua F, Melo US, Mattas L, Ashtiani S, Suchowersky O, Groeschel S, Rouleau GA, Yosovich K, Michelson M, Leibovitz Z, Bilal M, Uctepe E, Yesilyurt A, Ozdogan O, Celik T, Krägeloh-Mann I, Riess O, Rosewich H, Umair M, Lev D, Zuchner S, Schweizer U, Lynch DS, Gan-Or Z, Haack TB. EEFSEC deficiency: A selenopathy with early-onset neurodegeneration. Am J Hum Genet 2025; 112:168-180. [PMID: 39753114 PMCID: PMC11739927 DOI: 10.1016/j.ajhg.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025] Open
Abstract
Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures. Cerebral MRI primarily demonstrated a cerebellar pathology, including hypoplasia and progressive atrophy. Exome or genome sequencing identified six different bi-allelic EEFSEC variants in nine individuals from eight unrelated families. These variants showed reduced EEFSEC function in vitro, leading to lower levels of selenoproteins in fibroblasts. In line with the clinical phenotype, an eEFSec-RNAi Drosophila model displays progressive impairment of motor function, which is reflected in the synaptic defects in this model organisms. This study identifies EEFSEC deficiency as an inborn error of selenocysteine metabolism. It reveals the pathophysiological mechanisms of neurodegeneration linked to selenoprotein metabolism, suggesting potential targeted therapies.
Collapse
Affiliation(s)
- Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, 72016 Tübingen, Germany.
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Patricio Olguín
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Program of Human Genetics, Biomedical Sciences Institute, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Mehrdad A Estiar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mihaela Atanasova
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wilson Marques Jr
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14048-900, Brazil
| | - Jörg Enssle
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Brian Marsden
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Javiera Avilés
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Program of Human Genetics, Biomedical Sciences Institute, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Andrés González-Gutiérrez
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Program of Human Genetics, Biomedical Sciences Institute, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Noemi Candia
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Program of Human Genetics, Biomedical Sciences Institute, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Uniklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Susanne Morlot
- Department of Human Genetics, Hannover Medical School, Hanover, Germany
| | - Susana Peralta
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Alisa Groh
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Carmen Schillinger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Kuehn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Linda Sofan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, Radiologic Clinics, University of Tübingen, 72076 Tübingen, Germany
| | - Pedro J Tomaselli
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14048-900, Brazil
| | - Uta Diebold
- Social Pediatric Center, Auf der Bult, Hannover, Germany
| | - Amelie J Mueller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | | | - Maren Fuchs
- Sozialpädiatrisches Zentrum (SPZ), Allgemeines Krankenhaus Celle, 29221 Celle, Germany
| | - Fernando Freua
- Division of Clinical Neurology, Hospital das Clinicas da Universidade de São Paulo, São Paulo, Brazil
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lauren Mattas
- Department of Pediatrics, Division of Medical Genetics, Stanford Medicine, Stanford, CA, USA
| | - Setareh Ashtiani
- Alberta Children's Hospital, Medical Genetics, Calgary, AB, Canada
| | - Oksana Suchowersky
- Departments of Medicine (Neurology) and Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Samuel Groeschel
- Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Guy A Rouleau
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Keren Yosovich
- Molecular Genetic Lab, Wolfson Medical Center, Holon 58100, Israel
| | - Marina Michelson
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon 58100, Israel
| | - Zvi Leibovitz
- Obstetrics & Gynecology Ultrasound Unit, Bnai Zion Medical Center, Rappaport Faculty of Medicine, Technion-Israel Institute, Haifa, Israel
| | - Muhammad Bilal
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi 74800, Pakistan
| | - Eyyup Uctepe
- Acibadem Labgen Genetic Diagnosis Center, Istanbul, Turkey
| | - Ahmet Yesilyurt
- Acibadem Labgen Genetic Diagnosis Center, Istanbul, Turkey; Acibadem Maslak Hospital, Istanbul, Turkey
| | - Orhan Ozdogan
- Departman of Pediatric Neurology, Adana City Training and Research Hospital, Adana, Turkey
| | - Tamer Celik
- Departman of Pediatric Neurology, Adana City Training and Research Hospital, Adana, Turkey
| | - Ingeborg Krägeloh-Mann
- Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE)
| | - Hendrik Rosewich
- Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, 72016 Tübingen, Germany; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia (KSA); Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon 58100, Israel; The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon 58100, Israel
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Uniklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - David S Lynch
- Department of Neurogenetics, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, QC, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE)
| |
Collapse
|
4
|
Jujić A, Molvin J, Nilsson ED, Holm Isholth H, Dieden A, Korduner J, Zaghi A, Nezami Z, Bergmann A, Schomburg L, Magnusson M. Low Levels of Selenoprotein P Are Associated With Cognitive Impairment in Patients Hospitalized for Heart Failure. J Card Fail 2024; 30:1452-1461. [PMID: 38364966 DOI: 10.1016/j.cardfail.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Selenoprotein P (SELENOP) is a transporter for selenium and has been shown to protect selenium-status maintenance in the brain against deficiency and to support neuronal development, neurogenesis and neurocognitive function. Selenium deficiency has previously been associated with cognitive impairment in various populations, but no studies have been carried out in subjects with heart failure (HF). PURPOSE To explore whether SELENOP deficiency in subjects with acute HF is associated with cognitive impairment. METHODS Plasma SELENOP, as measured by an immunoassay analysis, is a well-validated marker of plasma selenium status and has the benefit of providing information on the bioavailable fraction of selenium to preferentially supplied cells equipped with receptors for SELENOP uptake. SELENOP was measured in 320 subjects hospitalized for HF. Of the subjects, 187 also underwent 4 cognitive tests assessing global cognitive function: Montreal Cognitive Assessment (MoCA); information processing (Symbol Digit Modalities Test [SDMT]); visual attention and task switching (Trailmaking Test A [TMT-A]); and executive speed (A Quick Test of Cognitive Speed [AQT] form and color). Appropriate cutoffs were used for each cognitive test to define cognitive impairment. Cross-sectional associations between SELENOP concentrations and cognitive impairment, as defined by each cognitive test, were explored using multivariable logistic models. Further, multivariable logistic models exploring associations between selenium deficiency, defined as the lowest quartile of SELENOP levels, and cognitive impairment, defined by each cognitive test, were carried out. RESULTS The 187 participants had a mean age of 73 (± 11.9) years; 31% were female and had a mean body mass index of 28.1 (± 5.6) kg/m2. Each 1 standard deviation increment in SELENOP concentrations was associated with lower odds of cognitive impairment, defined as a MoCA cut-off score < 23 (odds ratio [OR] 0.60; 95% CI 0.40-0.91; P = 0.017). Further, SELENOP concentrations in the lowest quartile (≤ 2.3 mg/L) were associated with cognitive impairment as measured by MoCA (OR 3.10; 95% CI 1.38-6.97; P = 0.006), SDMT (OR 2.26; 95% CI 1.10-4.67; P = 0.027) and TMT-A (OR 3.40; 95% CI 1.47-7.88; P = 0.004) but not by AQT form and color. CONCLUSIONS In subjects admitted for HF, higher SELENOP concentrations were associated with better performance on the MoCA test, reflecting global cognition, and SELENOP deficiency was associated with cognitive impairment as defined by 3 cognitive tests.
Collapse
Affiliation(s)
- Amra Jujić
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Lund University, Skane University Hospital, Malmö, Sweden
| | - John Molvin
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Lund University, Skane University Hospital, Malmö, Sweden
| | | | - Hannes Holm Isholth
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Lund University, Skane University Hospital, Malmö, Sweden
| | - Anna Dieden
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Biomedical Science, Malmö University, Malmö, Sweden; Biofilms Research Centre for Biointerfaces, Malmö University, Malmö, Sweden
| | - Johan Korduner
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Amir Zaghi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Zainu Nezami
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Lutz Schomburg
- The Institute for Experimental Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Lund University, Skane University Hospital, Malmö, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Hypertension in Africa Research Team (HART), North West University Potchefstroom, Potchefstroom, South Africa.
| |
Collapse
|
5
|
Turan TL, Klein HJ, Graf TR, Chillon TS, Plock JA, Schomburg L. New-onset autoantibodies to selenoprotein P following severe burn injury. Front Immunol 2024; 15:1422781. [PMID: 39176084 PMCID: PMC11338932 DOI: 10.3389/fimmu.2024.1422781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
The liver-derived selenium (Se) transporter selenoprotein P (SELENOP) declines in critical illness as a negative acute phase reactant and has recently been identified as an autoantigen. Hepatic selenoprotein biosynthesis and cotranslational selenocysteine insertion are sensitive to inflammation, therapeutic drugs, Se deficiency, and other modifiers. As severe burn injury induces a heavy inflammatory burden with concomitant Se depletion, we hypothesized an impairment of selenoprotein biosynthesis in the acute post-burn phase, potentially triggering the development of autoantibodies to SELENOP (SELENOP-aAb). To test this hypothesis, longitudinal serum samples from severely burned patients were analyzed over a period of six months. Newly occurring SELENOP-aAb were detected in 8.4% (7/83) of the burn patients, with onset not earlier than two weeks after injury. Prevalence of SELENOP-aAb was associated with injury severity, as aAb-positive patients have suffered more severe burns than their aAb-negative counterparts (median [IQR] ABSI: 11 [7-12] vs. 7 [5.8-8], p = 0.023). Autoimmunity to SELENOP was not associated with differences in total serum Se or SELENOP concentrations. A positive correlation of kidney-derived glutathione peroxidase (GPx3) with serum SELENOP was not present in the patients with SELENOP-aAb, who showed delayed normalization of GPx3 activity post-burn. Overall, the data suggest that SELENOP-aAb emerge after severe injury in a subset of patients and have antagonistic effects on Se transport. The nature of burn injury as a sudden event allowed a time-resolved analysis of a direct trigger for new-onset SELENOP-aAb, which may be relevant for severely affected patients requiring intensified acute and long-term care.
Collapse
Affiliation(s)
- Tabael L. Turan
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger J. Klein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Theresia Reding Graf
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan A. Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Leszto K, Biskup L, Korona K, Marcinkowska W, Możdżan M, Węgiel A, Młynarska E, Rysz J, Franczyk B. Selenium as a Modulator of Redox Reactions in the Prevention and Treatment of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:688. [PMID: 38929127 PMCID: PMC11201165 DOI: 10.3390/antiox13060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases stand as the predominant global cause of mortality, exerting a profound impact on both life expectancy and its quality. Given their immense public health burden, extensive efforts have been dedicated to comprehending the underlying mechanisms and developing strategies for prevention and treatment. Selenium, a crucial participant in redox reactions, emerges as a notable factor in maintaining myocardial cell homeostasis and influencing the progression of cardiovascular disorders. Some disorders, such as Keshan disease, are directly linked with its environmental deficiency. Nevertheless, the precise extent of its impact on the cardiovascular system remains unclear, marked by contradictory findings in the existing literature. High selenium levels have been associated with an increased risk of developing hypertension, while lower concentrations have been linked to heart failure and atrial fibrillation. Although some trials have shown its potential effectiveness in specific groups of patients, large cohort supplementation attempts have generally yielded unsatisfactory outcomes. Consequently, there persists a significant need for further research aimed at delineating specific patient cohorts and groups of diseases that would benefit from selenium supplementation.
Collapse
Affiliation(s)
- Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Klaudia Korona
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Weronika Marcinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Andrzej Węgiel
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| |
Collapse
|
7
|
Xu A, Wang Y, Luo D, Xia Y, Xue H, Yao H, Li S. By regulating the IP3R/GRP75/VDAC1 complex to restore mitochondrial dynamic balance, selenomethionine reduces lipopolysaccharide-induced neuronal apoptosis. J Cell Physiol 2024; 239:e31190. [PMID: 38219075 DOI: 10.1002/jcp.31190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
Selenium (Se), as one of the essential trace elements, plays an anti-inflammatory, antioxidation, and immune-enhancing effect in the body. In addition, Se can also improve nervous system damage induced by various factors. Earlier studies have described the important role of mitochondrial dynamic imbalance in lipopolysaccharide (LPS)-induced nerve injury. The inositol 1,4,5-triphosphate receptor (IP3R)/glucose-regulated protein 75 (GRP75)/voltage-dependent anion channel 1 (VDAC1) complex is considered to be the key to regulating mitochondrial dynamics. However, it is not clear whether Selenomethionine (SeMet) has any influence on the IP3R/GRP75/VDAC1 complex. Therefore, the aim of this investigation was to determine whether SeMet can alleviate LPS-induced brain damage and to elucidate the function of the IP3R/GRP75/VDAC1 complex in it. We established SeMet and/or LPS exposure models in vivo and in vitro using laying hens and primary chicken nerve cells. We noticed that SeMet reversed endoplasmic reticulum stress (ERS) and the imbalance in mitochondrial dynamics and significantly prevented the occurrence of neuronal apoptosis. We made this finding by morphological observation of the brain tissue of laying hens and the detection of related genes such as ERS, the IP3R/GRP75/VDAC1 complex, calcium signal (Ca2+), mitochondrial dynamics, and apoptosis. Other than that, we also discovered that the IP3R/GRP75/VDAC1 complex was crucial in controlling Ca2+ transport between the endoplasmic reticulum and the mitochondrion when SeMet functions as a neuroprotective agent. In summary, our results revealed the specific mechanism by which SeMet alleviated LPS-induced neuronal apoptosis for the first time. As a consequence, SeMet has great potential in the treatment and prevention of neurological illnesses (like neurodegenerative diseases).
Collapse
Affiliation(s)
- Anqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hua Xue
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Sun Q, Oltra E, Dijck-Brouwer DAJ, Chillon TS, Seemann P, Asaad S, Demircan K, Espejo-Oltra JA, Sánchez-Fito T, Martín-Martínez E, Minich WB, Muskiet FAJ, Schomburg L. Autoantibodies to selenoprotein P in chronic fatigue syndrome suggest selenium transport impairment and acquired resistance to thyroid hormone. Redox Biol 2023; 65:102796. [PMID: 37423160 PMCID: PMC10338150 DOI: 10.1016/j.redox.2023.102796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Chronic Fatigue Syndrome (CFS) presents with symptoms of hypothyroidism, including mental and physical fatigue, poor sleep, depression, and anxiety. However, thyroid hormone (TH) profiles of elevated thyrotropin and low thyroxine (T4) are not consistently observed. Recently, autoantibodies to the Se transporter SELENOP (SELENOP-aAb) have been identified in Hashimoto's thyroiditis and shown to impair selenoprotein expression. We hypothesized that SELENOP-aAb are prevalent in CFS, and associate with reduced selenoprotein expression and impaired TH deiodination. Se status and SELENOP-aAb prevalence was compared by combining European CFS patients (n = 167) and healthy controls (n = 545) from different sources. The biomarkers total Se, glutathione peroxidase (GPx3) and SELENOP showed linear correlations across the samples without reaching saturation, indicative of Se deficiency. SELENOP-aAb prevalence was 9.6-15.6% in CFS versus 0.9-2.0% in controls, depending on cut-off for positivity. The linear correlation between Se and GPx3 activity was absent in SELENOP-aAb positive patients, suggesting impaired Se supply of kidney. A subgroup of paired control (n = 119) and CSF (n = 111) patients had been characterized for TH and biochemical parameters before. Within this subgroup, SELENOP-aAb positive patients displayed particularly low deiodinase activity (SPINA-GD index), free T3 levels, total T3 to total T4 (TT3/TT4) and free T3 to free T4 (FT3/FT4) ratios. In 24 h urine, iodine concentrations were significantly lower in SELENOP-aAb positive than in SELENOP-aAb negative patients or controls (median (IQR); 43.2 (16.0) vs. 58.9 (45.2) vs. 89.0 (54.9) μg/L). The data indicate that SELENOP-aAb associate with low deiodination rate and reduced activation of TH to active T3. We conclude that a subset of CFS patients express SELENOP-aAb that disturb Se transport and reduce selenoprotein expression in target tissues. Hereby, TH activation decreases as an acquired condition not reflected by thyrotropin and T4 in blood. This hypothesis opens new diagnostic and therapeutic options for SELENOP-aAb positive CFS, but requires clinical evidence from intervention trials.
Collapse
Affiliation(s)
- Qian Sun
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany; selenOmed GmbH, Berlin, Germany
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - D A Janneke Dijck-Brouwer
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | | | - Sabrina Asaad
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - José Andrés Espejo-Oltra
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Teresa Sánchez-Fito
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | - Waldemar B Minich
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Frits A J Muskiet
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany.
| |
Collapse
|
9
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Hackler J, Demircan K, Chillon TS, Sun Q, Geisler N, Schupp M, Renko K, Schomburg L. High throughput drug screening identifies resveratrol as suppressor of hepatic SELENOP expression. Redox Biol 2022; 59:102592. [PMID: 36586222 PMCID: PMC9816962 DOI: 10.1016/j.redox.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Selenium (Se) is an essential trace element that exerts its effects mainly as the proteinogenic amino acid selenocysteine within a small set of selenoproteins. Among all family members, selenoprotein P (SELENOP) constitutes a particularly interesting protein as it serves as a biomarker and serum Se transporter from liver to privileged tissues. SELENOP expression is tightly regulated by dietary Se intake, inflammation, hypoxia and certain substances, but a systematic drug screening has hitherto not been performed. METHODS A compound library of 1861 FDA approved clinically relevant drugs was systematically screened for interfering effects on SELENOP expression in HepG2 cells using a validated ELISA method. Dilution experiments were conducted to characterize dose-responses. A most potent SELENOP inhibitor was further characterized by RNA-seq analysis to assess effect-associated biochemical pathways. RESULTS Applying a 2-fold change threshold, 236 modulators of SELENOP expression were identified. All initial hits were replicated as biological triplicates and analyzed for effects on cell viability. A set of 38 drugs suppressed SELENOP expression more than three-fold, among which were cancer drugs, immunosuppressants, anti-infectious drugs, nutritional supplements and others. Considering a 90% cell viability threshold, resveratrol, vidofludimus, and antimony potassium-tartrate were the most potent substances with suppressive effects on extracellular SELENOP concentrations. Resveratrol suppressed SELENOP levels dose-dependently in a concentration range from 0.8 μM to 50.0 μM, without affecting cell viability, along with strong effects on key genes controlling metabolic pathways and vesicle trafficking. CONCLUSION The results highlight an unexpected direct effect of the plant stilbenoid resveratrol, known for its antioxidative and health-promoting effects, on the central Se transport protein. The suppressive effects on SELENOP may increase liver Se levels and intracellular selenoprotein expression, thereby conferring additional protection to hepatocytes at the expense of systemic Se transport. Further physiological effects from this interaction require analyses in vivo and by clinical studies.
Collapse
Affiliation(s)
- Julian Hackler
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Nino Geisler
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany,German Federal Institute for Risk Assessment, Department Experimental Toxicology and ZEBET, 12277, Berlin, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany.
| |
Collapse
|