1
|
Du J, Chen F, Chen Z, Zhao W, Wang J, Zhou M. LncRNA LINC01664 promotes cancer resistance through facilitating homologous recombination-mediated DNA repair. DNA Repair (Amst) 2024; 143:103770. [PMID: 39357141 DOI: 10.1016/j.dnarep.2024.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The intracellular responses to DNA double-strand breaks (DSB) repair are crucial for genomic stability and play an essential role in cancer resistance. In addition to canonical DSB repair proteins, long non-coding RNAs (lncRNAs) have been found to be involved in this sophisticated network. In the present study, we performed a loss-of-function screen for a customized siRNA Premix Library to identify lncRNAs that participate in homologous recombination (HR) process. Among the candidates, we identified LINC01664 as a novel lncRNA required for HR repair. Furthermore, LINC01664 knockdown significantly increased the sensitivity of cancer cells to DNA damage agents such as ionizing radiation and genotoxic drugs. Mechanistically, LINC01664 interacted with Sirt1 promoter and then activated Sirt1 transcription, which contributed to HR-mediated DNA damage repair. In summary, our findings revealed a new mechanism of LINC01664 in DNA damage repair, providing evidence for a potential therapeutic strategy for eliminating the treatment bottlenecks caused by cancer resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Jie Du
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China; Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihan Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenna Zhao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianyu Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Liang Y, Zhao J, Dai T, Li X, Chen L, He Z, Guo M, Zhao J, Xu L. A review of KLF4 and inflammatory disease: Current status and future perspective. Pharmacol Res 2024; 207:107345. [PMID: 39134187 DOI: 10.1016/j.phrs.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Inflammation is the response of the human body to injury, infection, or other abnormal states, which is involved in the development of many diseases. As a member of the Krüppel-like transcription factors (KLFs) family, KLF4 plays a crucial regulatory role in physiological and pathological processes due to its unique dual domain of transcriptional activation and inhibition. A growing body of evidence has demonstrated that KLF4 plays a pivotal role in the pathogenesis of various inflammatory disorders, including inflammatory bowel disease, osteoarthritis, renal inflammation, pneumonia, neuroinflammation, and so on. Consequently, KLF4 has emerged as a promising new therapeutic target for inflammatory diseases. This review systematically generalizes the molecular regulatory network, specific functions, and mechanisms of KLF4 to elucidate its complex roles in inflammatory diseases. An in-depth study on the biological function of KLF4 is anticipated to offer a novel research perspective and potential intervention strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Yidan Liang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiamin Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tengkun Dai
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xin Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Longqin Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
3
|
Arai Y, Cha R, Nakagawa S, Inoue A, Nakamura K, Takahashi K. Cartilage Homeostasis under Physioxia. Int J Mol Sci 2024; 25:9398. [PMID: 39273346 PMCID: PMC11395513 DOI: 10.3390/ijms25179398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Articular cartilage receives nutrients and oxygen from the synovial fluid to maintain homeostasis. However, compared to tissues with abundant blood flow, articular cartilage is exposed to a hypoxic environment (i.e., physioxia) and has an enhanced hypoxic stress response. Hypoxia-inducible factors (HIFs) play a pivotal role in this physioxic environment. In normoxic conditions, HIFs are downregulated, whereas in physioxic conditions, they are upregulated. The HIF-α family comprises three members: HIF-1α, HIF-2α, and HIF-3α. Each member has a distinct function in articular cartilage. In osteoarthritis, which is primarily caused by degeneration of articular cartilage, HIF-1α is upregulated in chondrocytes and is believed to protect articular cartilage by acting anabolically on it. Conversely, in contrast to HIF-1α, HIF-2α exerts a catabolic influence on articular cartilage. It may therefore be possible to develop a new treatment for OA by controlling the expression of HIF-1α and HIF-2α with drugs or by altering the oxygen environment in the joints.
Collapse
Affiliation(s)
- Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryota Cha
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsuo Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kei Nakamura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
4
|
Diekman BO, Loeser RF. DNA Damage and Cellular Senescence in Osteoarthritis: An Unexpected Role for Interferon Regulatory Factor 1 in Chondrocyte DNA Repair. Arthritis Rheumatol 2024; 76:842-844. [PMID: 38343350 PMCID: PMC11136596 DOI: 10.1002/art.42822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Affiliation(s)
- Brian O Diekman
- University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh
| | | |
Collapse
|
5
|
Lammi MJ, Qu C. Regulation of Oxygen Tension as a Strategy to Control Chondrocytic Phenotype for Cartilage Tissue Engineering and Regeneration. Bioengineering (Basel) 2024; 11:211. [PMID: 38534484 DOI: 10.3390/bioengineering11030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Cartilage defects and osteoarthritis are health problems which are major burdens on health care systems globally, especially in aging populations. Cartilage is a vulnerable tissue, which generally faces a progressive degenerative process when injured. This makes it the 11th most common cause of global disability. Conservative methods are used to treat the initial phases of the illness, while orthopedic management is the method used for more progressed phases. These include, for instance, arthroscopic shaving, microfracturing and mosaicplasty, and joint replacement as the final treatment. Cell-based implantation methods have also been developed. Despite reports of successful treatments, they often suffer from the non-optimal nature of chondrocyte phenotype in the repair tissue. Thus, improved strategies to control the phenotype of the regenerating cells are needed. Avascular tissue cartilage relies on diffusion for nutrients acquisition and the removal of metabolic waste products. A low oxygen content is also present in cartilage, and the chondrocytes are, in fact, well adapted to it. Therefore, this raises an idea that the regulation of oxygen tension could be a strategy to control the chondrocyte phenotype expression, important in cartilage tissue for regenerative purposes. This narrative review discusses the aspects related to oxygen tension in the metabolism and regulation of articular and growth plate chondrocytes and progenitor cell phenotypes, and the role of some microenvironmental factors as regulators of chondrocytes.
Collapse
Affiliation(s)
- Mikko J Lammi
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Chengjuan Qu
- Department of Odontology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
6
|
Tavares e Silva J, Pessoa J, Nóbrega-Pereira S, Bernardes de Jesus B. The Impact of Long Noncoding RNAs in Tissue Regeneration and Senescence. Cells 2024; 13:119. [PMID: 38247811 PMCID: PMC10814083 DOI: 10.3390/cells13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Overcoming senescence with tissue engineering has a promising impact on multiple diseases. Here, we provide an overview of recent studies in which cellular senescence was inhibited through the up/downregulation of specific lncRNAs. This approach prevented senescence in the bones, joints, nervous system, heart, and blood vessels, with a potential impact on regeneration and the prevention of osteoarthritis and osteoporosis, as well as neurodegenerative and cardiovascular diseases. Senescence of the skin and liver could also be prevented through the regulation of cellular levels of specific lncRNAs, resulting in the rejuvenation of cells from these organs and their potential protection from disease. From these exciting achievements, which support tissue regeneration and are not restricted to stem cells, we propose lncRNA regulation through RNA or gene therapies as a prospective preventive and therapeutic approach against aging and multiple aging-related diseases.
Collapse
Affiliation(s)
| | | | | | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (J.T.e.S.); (J.P.); (S.N.-P.)
| |
Collapse
|
7
|
Zhou B, Ji B, Shen C, Zhang X, Yu X, Huang P, Yu R, Zhang H, Dou X, Chen Q, Zeng Q, Wang X, Cao Z, Hu G, Xu S, Zhao H, Yang Y, Zhou Y, Wang J. EVLncRNAs 3.0: an updated comprehensive database for manually curated functional long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 2024; 52:D98-D106. [PMID: 37953349 PMCID: PMC10767905 DOI: 10.1093/nar/gkad1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as crucial regulators across diverse biological processes and diseases. While high-throughput sequencing has enabled lncRNA discovery, functional characterization remains limited. The EVLncRNAs database is the first and exclusive repository for all experimentally validated functional lncRNAs from various species. After previous releases in 2018 and 2021, this update marks a major expansion through exhaustive manual curation of nearly 25 000 publications from 15 May 2020, to 15 May 2023. It incorporates substantial growth across all categories: a 154% increase in functional lncRNAs, 160% in associated diseases, 186% in lncRNA-disease associations, 235% in interactions, 138% in structures, 234% in circular RNAs, 235% in resistant lncRNAs and 4724% in exosomal lncRNAs. More importantly, it incorporated additional information include functional classifications, detailed interaction pathways, homologous lncRNAs, lncRNA locations, COVID-19, phase-separation and organoid-related lncRNAs. The web interface was substantially improved for browsing, visualization, and searching. ChatGPT was tested for information extraction and functional overview with its limitation noted. EVLncRNAs 3.0 represents the most extensive curated resource of experimentally validated functional lncRNAs and will serve as an indispensable platform for unravelling emerging lncRNA functions. The updated database is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs3/.
Collapse
Affiliation(s)
- Bailing Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Baohua Ji
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Congcong Shen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xia Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xue Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Pingping Huang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Ru Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Hongmei Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Life Science, Dezhou University, Dezhou 253023, China
| | - Xianghua Dou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Qiangcheng Zeng
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Life Science, Dezhou University, Dezhou 253023, China
| | - Xiaoxin Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Shicai Xu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuedong Yang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518038, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|