1
|
Diel de Amorim M, Dong L, Byron M, Foster RA, Klein C, Saleh M, Saleh T, Card C. Characterization of serum and tissue oxytocinase and tissue oxytocin in the pregnant and non-pregnant mare. Sci Rep 2023; 13:4616. [PMID: 36944665 PMCID: PMC10030782 DOI: 10.1038/s41598-023-31540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Oxytocin is a hormone with functions in: reproduction, maternal bonding, milk ejection, and feeding/social behavior, and is reported to be present in a variety of tissues. Our goal is to characterize oxytocin and leucyl and cystinyl aminopeptidase (LNPEP/oxytocinase), a key regulator of oxytocin in mares. We measured serum and tissue LNPEP by ELISA from ovulation (D0) until D21-22 in non-pregnant (n = 5) and pregnant mares (n = 6); and in periparturient and postpartum mares (n = 18). Placenta (n = 7) and homogenized tissue of diestrus mares (n = 6) were evaluated using protein determinations and LNPEP ELISAs. Identification of LNPEP and OXT protein in tissues was also performed via western blot, immunohistochemistry and liquid chromatography-mass spectrometry (LC-MS/MS). Furthermore, in situ hybridization was performed for LNPEP and OXT on endometrium, myometrium, pituitary and corpus luteum (CL). Serum LNPEP concentration were similar. Placental LNPEP U/mg protein was highest in the body and pregnant horn. The highest to lowest LNPEP U/mg protein by tissue were: myometrium > follicle wall > endometrium > kidney > CL > liver. Oxytocin was identified in the equine pituitary, CL and placenta and is likely to act in autocrine or paracrine manner, while LNPEP may act systemically and locally to regulate the availability of OXT.
Collapse
Affiliation(s)
- Mariana Diel de Amorim
- Department of Clinical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY, 14853, USA.
| | - Lynn Dong
- Immunopathology Research and Development Laboratory, Department of Biomedical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY, 14853, USA
- Translational Pathology, Bristol Myers Squibb, Route 206 and Provinceline Rd., Princeton, NJ, 08543, USA
| | - Michael Byron
- Department of Clinical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY, 14853, USA
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Claudia Klein
- Department of Veterinary Clinical and Diagnostic Science, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Federal Research Institute for Animal Health, Institute of Farm Animal Genetics, Hoeltystr.10, 31535, Neustadt-Mariense, Germany
| | - Monique Saleh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Tarek Saleh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Claire Card
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
2
|
Serum progesterone and oxytocinase, and endometrial and luteal gene expression in pregnant, nonpregnant, oxytocin, carbetocin and meclofenamic acid treated mares. Theriogenology 2023; 198:47-60. [PMID: 36549183 DOI: 10.1016/j.theriogenology.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022]
Abstract
Our objectives were to examine changes in endometrial and luteal gene expression during estrus, diestrus, pregnancy and treatments to induce luteolysis and putatively induce luteostasis. Groups were: Diestrus (DIEST), Estrus (ESTR), Pregnant (PREG), Oxytocin (OXY), Carbetocin (CARB), and Meclofenamic acid (MFA). Blood was obtained from day (D)12 to D15 for measurement of oxytocinase, also referred to as leucyl-cysteinyl aminopeptidase (LNPEP) and progesterone. Luteal biopsies were obtained on D12 and D15 and an endometrial biopsy on D15. Real-time RT-PCR was performed for the following genes: PGR, ESR1, OXTR,OXT, LNPEP, PTGS2, PTGFR, PLA2G2C, PTGES, SLC2A4, and SLC2A1. Regarding serum LNPEP, PREG and OXY (p-value<0.001) had higher concentrations than DIEST mares. Endometrial PTGES expression was higher (p-value <0.04) in DIEST, PREG and OXY than other groups. Endometrium from ESTR had increased expression of OXT (p-value < 0.02) compared to MFA and OXY mares. Carbetocin treatment: decreased serum progesterone and LNPEP; increased endometrial PLA2G2C; decreased endometrial PTGES; and decreased luteal aromatase and PTGES. Treatment with MFA: decreased endometrial PLA2G2C, increased endometrial PTGES; and resulted in less OXTR and OXT luteal abundance on D12 compared to D15. Endometrial and luteal expression of LNPEP is affected by physiologic stage and treatment and is involved in luteal function and pregnancy recognition pathways through effects on oxytocin and prostaglandin synthesis in the horse.
Collapse
|
3
|
Diel de Amorim M, Bramer SA, Rajamanickam GD, Klein C, Card C. Endometrial and luteal gene expression of putative gene regulators of the equine maternal recognition of pregnancy. Anim Reprod Sci 2022; 245:107064. [DOI: 10.1016/j.anireprosci.2022.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
|
4
|
Diel de Amorim M, Klein C, Foster R, Dong L, Lopez-Rodriguez MF, Card C. Expression of Oxytocin/Neurophysin I and Oxytocinase in the Equine Conceptus from Day 8 to Day 21 Post-Ovulation. Animals (Basel) 2022; 12:799. [PMID: 35405789 PMCID: PMC8996865 DOI: 10.3390/ani12070799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022] Open
Abstract
Leucyl and cystinyl aminopeptidase (LNPEP/oxytocinase) is an enzyme that metabolizes oxytocin in serum and tissues. The presence of oxytocin/neurophysin I (OXT), oxytocin and LNPEP and their relationship to other genes is unknown in the equine conceptus. Our objective was to characterize gene expression of LNPEP and OXT on D8, 10, 12, 14, 15, 16 and 21 conceptuses in relationship to other genes. Immunohistochemistry, western blot and liquid chromatography with tandem mass spectrometry (LC-MS/MS) were used for identification of oxytocin and LNPEP in D15, 16 and 18 conceptuses. LNPEP was increased at D15 compared to D10, was immunolocalized in the equine trophectoderm and endoderm, and protein was confirmed by LC-MS/MS. Maximal abundance of OXT was at D21, and lowest on D12 and D14, but no protein was identified. OXTR abundance was highest on D14 and D21. LNPEP was correlated with PTGFR and PTGES on D12 and D14-D15, and high expression of PTGES, PTGS2 was found on D14, D15 and D21; PTGFR was found on D8 and D12-21. LNPEP may have a role in prostaglandin regulation and conceptus fixation by decreasing the availability of oxytocin. Further investigation on the role embryonic LNPEP during pregnancy is warranted.
Collapse
Affiliation(s)
- Mariana Diel de Amorim
- Department of Clinical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY 14853, USA
| | - Claudia Klein
- Department of Veterinary Clinical and Diagnostic Science, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Robert Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada;
| | - Lynn Dong
- Immunopathology Research and Development Laboratory, Department of Biomedical Sciences, Cornell University, 930 Campus Rd, Ithaca, NY 14853, USA;
| | - Maria Fernanda Lopez-Rodriguez
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada;
| | - Claire Card
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
5
|
Elkins EA, Walti KA, Newberry KE, Lema SC. Identification of an oxytocinase/vasopressinase-like leucyl-cystinyl aminopeptidase (LNPEP) in teleost fish and evidence for hypothalamic mRNA expression linked to behavioral social status. Gen Comp Endocrinol 2017; 250:58-69. [PMID: 28596078 DOI: 10.1016/j.ygcen.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/03/2017] [Accepted: 06/04/2017] [Indexed: 02/06/2023]
Abstract
The vasotocin/vasopressin and isotocin/mesotocin/oxytocin family of nonapeptides regulate social behaviors and physiological functions associated with reproductive physiology and osmotic balance. While experimental and correlative studies provide evidence for these nonapeptides as modulators of behavior across all classes of vertebrates, mechanisms for nonapeptide inactivation in regulating these functions have been largely overlooked. Leucyl-cystinyl aminopeptidase (LNPEP) - also known as vasopressinase, oxytocinase, placental leucine aminopeptidase (P-LAP), and insulin-regulated aminopeptidase (IRAP) - is a membrane-bound zinc-dependent metalloexopeptidase enzyme that inactivates vasopressin, oxytocin, and select other cyclic polypeptides. In humans, LNPEP plays a key role in the clearance of oxytocin during pregnancy. However, the evolutionary diversity, expression distribution, and functional roles of LNPEP remain unresolved for other vertebrates. Here, we isolated and sequenced a full-length cDNA encoding a LNPEP-like polypeptide of 1033 amino acids from the ovarian tissue of Amargosa pupfish, Cyprinodon nevadensis. This deduced polypeptide exhibited high amino acid identity to human LNPEP both in the protein's active domain that includes the peptide binding site and zinc cofactor binding motif (53.1% identity), and in an intracellular region that distinguishes LNPEP from other aminopeptidases (70.3% identity). Transcripts encoding this LNPEP enzyme (lnpep) were detected at highest relative abundance in the gonads, hypothalamus, forebrain, optic tectum, gill and skeletal muscle of adult pupfish. Further evaluation of lnpep transcript abundance in the brain of sexually-mature pupfish revealed that lnpep mRNAs were elevated in the hypothalamus of socially subordinate females and males, and at lower abundance in the telencephalon of socially dominant males compared to dominant females. These findings provide evidence of an association between behavioral social status and hypothalamic lnpep transcript abundance and suggest that variation in the rate of VT/IT peptide inactivation by LNPEP may be a contributing component in the mechanism whereby nonapeptides regulate social behavior.
Collapse
Affiliation(s)
- Emma A Elkins
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kayla A Walti
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kathryn E Newberry
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Angela Palumbo
- Centro de Asistencia a la Reproducción Humana de Canarias, La Laguna, Tenerife, Spain
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UDI de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna, Tenerife, Spain
- Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Frederick Naftolin
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Lumbers ER, Pringle KG. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am J Physiol Regul Integr Comp Physiol 2013; 306:R91-101. [PMID: 24089380 DOI: 10.1152/ajpregu.00034.2013] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review describes the changes that occur in circulating renin-angiotensin-aldosterone system (RAAS) components in human pregnancy. These changes depend on endocrine secretions from the ovary and possibly the placenta and decidua. Not only do these hormonal secretions directly contribute to the increase in RAAS levels, they also cause physiological changes within the cardiovascular system and the kidney, which, in turn, induce reflex release of renal renin. High levels of ANG II play a critical role in maintaining circulating blood volume, blood pressure, and uteroplacental blood flow through interactions with the ANG II type I receptor and through increased production of downstream peptides acting on a changing ANG receptor phenotype. The increase in ANG II early in gestation is driven by estrogen-induced increments in angiotensinogen (AGT) levels, so there cannot be negative feedback leading to reduced ANG II production. AGT can exist in various forms in terms of redox state or complexed with other proteins as polymers; these affect the ability of renin to cleave ANG I from AGT. Thus, during pregnancy the rate of ANG I production varies not only because levels of renin change in response to homeostatic demand but also because AGT changes not only in concentration but in form. Activation of the circulating and intrarenal RAASs is essential for normal pregnancy outcome subserving the increased demand for salt and, hence, water during pregnancy. Thus, the complex integration of the secretions and actions of the circulating maternal renin-angiotensin system in pregnancy plays a key role in pregnancy outcome.
Collapse
Affiliation(s)
- Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy and Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | | |
Collapse
|
8
|
Pham V, Burns P, Albiston AL, Yeatman HR, Ng L, Diwakarla S, Chai SY. Reproduction and maternal behavior in insulin-regulated aminopeptidase (IRAP) knockout mice. Peptides 2009; 30:1861-5. [PMID: 19647771 DOI: 10.1016/j.peptides.2009.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
During human pregnancy, a circulating form of insulin-regulated aminopeptidase (IRAP EC 3.4.11.3), often termed oxytocinase or placental leucine aminopeptidase (PLAP), is present in plasma. It is proposed that circulating IRAP plays an important role in regulating the circulating levels of oxytocin and/or vasopressin during pregnancy. We assessed the reproductive and maternal profile of global IRAP knock out mice. No differences in the reproductive profile were observed, with normal gestational period, litter size and parturition recorded. However, western blot analysis of pregnant mouse serum, failed to detect IRAP, a result which was confirmed by fluorimetric IRAP enzyme assay. A review of the literature revealed that the presence of IRAP in the maternal circulation during pregnancy has been only reported in humans. Moreover, the sequence, Phe154 Ala155, identified as the cleavage site for the release of soluble IRAP, is restricted to members of the homindae family. Therefore the absence of IRAP from the circulation in mice, and other species during pregnancy, is due to the inability of a secretase to cleave placental IRAP to produce a soluble form of the enzyme. Given the expression of IRAP in areas of the brain associated with oxytocin modulated maternal behavior, we also investigated whether the IRAP global knockout mice had improved maternal responses. Using standard tests to assess maternal behavior, including pup retrieval, feeding and nurturing, no differences between knock out and wild type dams were observed. In conclusion, the physiological significance of circulating IRAP during human pregnancy cannot be addressed by investigations on mice.
Collapse
Affiliation(s)
- Vi Pham
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|