1
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
2
|
Neuronal cAMP/PKA Signaling and Energy Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1090:31-48. [PMID: 30390284 DOI: 10.1007/978-981-13-1286-1_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain plays a key role in the regulation of body weight and glucose metabolism. Peripheral signals including hormones, metabolites, and neural afferent signals are received and processed by the brain which in turn elicits proper behavioral and metabolic responses for maintaining energy and glucose homeostasis. The cAMP/protein kinase A (PKA) pathway acts downstream G-protein-coupled receptors (GPCR) to mediate the physiological effects of many hormones and neurotransmitters. Activated PKA phosphorylates various proteins including ion channels, enzymes, and transcription factors and regulates their activity. Recent studies have shown that neuronal cAMP/PKA activity in multiple brain regions are involved in the regulation of feeding, energy expenditure, and glucose homeostasis. In this chapter I summarize recent genetic and pharmacological studies concerning the regulation of body weight and glucose homeostasis by cAMP/PKA signaling in the brain.
Collapse
|
3
|
Kokare DM, Kyzar EJ, Zhang H, Sakharkar AJ, Pandey SC. Adolescent Alcohol Exposure-Induced Changes in Alpha-Melanocyte Stimulating Hormone and Neuropeptide Y Pathways via Histone Acetylation in the Brain During Adulthood. Int J Neuropsychopharmacol 2017; 20:758-768. [PMID: 28575455 PMCID: PMC5581492 DOI: 10.1093/ijnp/pyx041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/15/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background Adolescent intermittent ethanol exposure causes long-lasting alterations in brain epigenetic mechanisms. Melanocortin and neuropeptide Y signaling interact and are affected by ethanol exposure in the brain. Here, the persistent effects of adolescent intermittent ethanol on alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and their regulation by histone acetylation mechanisms were investigated in adulthood. Methods Male rats were exposed to adolescent intermittent ethanol (2 g/kg, i.p.) or volume-matched adolescent intermittent saline from postnatal days 28 to 41 and allowed to grow to postnatal day 92. Anxiety-like behaviors were measured by the elevated plus-maze test. Brain regions from adult rats were used to examine changes in alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and the histone acetylation status of their promoters. Results Adolescent intermittent ethanol-exposed adult rats displayed anxiety-like behaviors and showed increased pro-opiomelanocortin mRNA levels in the hypothalamus and increased melanocortin 4 receptor mRNA levels in both the amygdala and hypothalamus compared with adolescent intermittent saline-exposed adult rats. The alpha-Melanocyte stimulating hormone and melanocortin 4 receptor protein levels were increased in the central and medial nucleus of the amygdala, paraventricular nucleus, and arcuate nucleus of the hypothalamus in adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Neuropeptide Y protein levels were decreased in the central and medial nucleus of the amygdala of adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Histone H3K9/14 acetylation was decreased in the neuropeptide Y promoter in the amygdala but increased in the melanocortin 4 receptor gene promoter in the amygdala and the melanocortin 4 receptor and pro-opiomelanocortin promoters in the hypothalamus of adolescent intermittent ethanol-exposed adult rats compared with controls. Conclusions Increased melanocortin and decreased neuropeptide Y activity due to changes in histone acetylation in emotional brain circuitry may play a role in adolescent intermittent ethanol-induced anxiety phenotypes in adulthood.
Collapse
Affiliation(s)
- Dadasaheb M Kokare
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| | - Amul J Sakharkar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| |
Collapse
|
4
|
Logan M, Van der Merwe MT, Dodgen TM, Myburgh R, Eloff A, Alessandrini M, Pepper MS. Allelic variants of the Melanocortin 4 receptor (MC4R) gene in a South African study group. Mol Genet Genomic Med 2015; 4:68-76. [PMID: 26788538 PMCID: PMC4707032 DOI: 10.1002/mgg3.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Obesity is a global epidemic that results in significant morbidity and mortality. Mutations in the melanocortin 4 receptor (MC4R) gene, which codes for a G-protein-coupled receptor responsible for postprandial satiety signaling, have been associated with monogenic obesity. The prevalence of obesity is on the increase in South Africa, and it is hypothesized that mutations in MC4R are a contributing factor. The aim of this study was to perform a retrospective assessment of the relationship between allelic variants of MC4R and BMI in a South African study cohort. DNA was isolated from a demographically representative cohort of 297 individuals and the entire MC4R gene sequenced by Sanger sequencing. Eight previously reported MC4R variants were identified in 42 of the 297 (14.1%) study participants. The most frequently observed MC4R alleles were V103I (4.0%), I170V (1.5%), and I198I (1.2%), while the remaining five variants together constituted 1.18%. Five compound heterozygotes were also detected. Although MC4R variants were rare, the majority of variation was observed in individuals of Black African ancestry. No statistically significant associations with BMI were reported. Given that lifestyle interventions have limited success in decreasing obesity, there is an urgent need to perform large-scale population studies to further elucidate the molecular underpinnings of this disease.
Collapse
Affiliation(s)
- Murray Logan
- Department of ImmunologyUniversity of PretoriaPretoriaSouth Africa; Faculty of Health SciencesInstitute for Cellular and Molecular MedicineUniversity of PretoriaPretoriaSouth Africa
| | | | - Tyren M Dodgen
- Faculty of Health SciencesInstitute for Cellular and Molecular MedicineUniversity of PretoriaPretoriaSouth Africa; Department of PharmacologyUniversity of PretoriaPretoriaSouth Africa
| | - Renier Myburgh
- Department of ImmunologyUniversity of PretoriaPretoriaSouth Africa; Faculty of Health SciencesInstitute for Cellular and Molecular MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Arinda Eloff
- Department of ImmunologyUniversity of PretoriaPretoriaSouth Africa; Faculty of Health SciencesInstitute for Cellular and Molecular MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Marco Alessandrini
- Department of ImmunologyUniversity of PretoriaPretoriaSouth Africa; Faculty of Health SciencesInstitute for Cellular and Molecular MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Michael S Pepper
- Department of ImmunologyUniversity of PretoriaPretoriaSouth Africa; Faculty of Health SciencesInstitute for Cellular and Molecular MedicineUniversity of PretoriaPretoriaSouth Africa; Department of Genetic Medicine and DevelopmentFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
5
|
Derkach KV, Shpakova EA, Zharova OA, Shpakov AO. The metabolic changes in rats immunized with BSA conjugate of peptides derived from the N-terminal region of type 4 melanocortin receptor. DOKL BIOCHEM BIOPHYS 2014; 458:163-6. [DOI: 10.1134/s1607672914050019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 11/23/2022]
|
6
|
Melanocortin-4 Receptor in Energy Homeostasis and Obesity Pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:147-91. [DOI: 10.1016/b978-0-12-386933-3.00005-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Agouti-Related Protein/genetics
- Agouti-Related Protein/metabolism
- Agouti-Related Protein/pharmacology
- Animals
- Body Weight/drug effects
- Corticosterone/pharmacology
- Eating/drug effects
- Energy Metabolism
- Hypothalamus/metabolism
- Mice
- Mice, Knockout
- Pro-Opiomelanocortin/deficiency
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Protein Binding
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Brehm Tower, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
8
|
Melanocortins and body weight regulation: glucocorticoids, Agouti-related protein and beyond. Eur J Pharmacol 2011; 660:111-8. [PMID: 21199644 DOI: 10.1016/j.ejphar.2010.10.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/29/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022]
Abstract
In the intervening three decades since Panksepp observed for the first time that centrally administered α-melanocyte stimulating hormone decreased food intake (Panksepp and Meeker, 1976), a wealth of data have accrued to firmly establish melanocortin signaling as a central regulator of food intake and fat mass. Advances in molecular biology have not only allowed detailed studies of spontaneously occurring obese mice with altered melanocortin signaling to be undertaken but also permitted the generation of a plethora of mouse models with precise perturbations at critical steps in the melanocortin system to finesse further the cellular and molecular architecture of relevant pathways. In this article we focus in upon a number of these mouse models which continue to help us tease apart the complexities of this critical system. Further, we review data on the important interaction between pro-opiomelanocortin derived peptides and the adrenal system and the relationship between agonist and antagonist peptides acting at central melanocortin receptors.
Collapse
|
9
|
Patel MP, Cribb Fabersunne CS, Yang YK, Kaelin CB, Barsh GS, Millhauser GL. Loop-swapped chimeras of the agouti-related protein and the agouti signaling protein identify contacts required for melanocortin 1 receptor selectivity and antagonism. J Mol Biol 2010; 404:45-55. [PMID: 20831872 DOI: 10.1016/j.jmb.2010.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/12/2010] [Accepted: 08/30/2010] [Indexed: 11/29/2022]
Abstract
Agouti-related protein (AgRP) and agouti signaling protein (ASIP) are homologs that play critical roles in energy balance and pigmentation, respectively, by functioning as antagonistic ligands at their cognate melanocortin receptors. Signaling specificity is mediated in part through receptor binding selectivity brought about by alterations in the cysteine-rich carboxy-terminal domains of the ligands. AgRP binds with high affinity to the melanocortin 3 receptor and the melanocortin 4 receptor, but not to the melanocortin 1 receptor (MC1R), whereas ASIP binds with high affinity to all three receptors. This work explores the structural basis for receptor selectivity by studying chimeric proteins developed by interchanging loops between the cysteine-rich domain of ASIP and the cysteine-rich domain of AgRP. Binding data demonstrate that melanocortin 4 receptor responds to all chimeras and is therefore highly tolerant of gross loop changes. By contrast, MC1R responds primarily to those chimeras with a sequence close to that of wild-type ASIP. Further analysis of binding and functional data suggests that the ASIP C-terminal loop (a six-amino-acid segment closed by the final disulfide bond) is essential for high-affinity MC1R binding and inverse agonism. Comparison with previously published molecular models suggests that this loop makes contact with the first extracellular loop of MC1R through a series of key hydrophobic interactions.
Collapse
Affiliation(s)
- Mira P Patel
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
10
|
Anghel A, Jamieson CAM, Ren X, Young J, Porche R, Ozigbo E, Ghods DE, Lee ML, Liu Y, Lutfy K, Friedman TC. Gene expression profiling following short-term and long-term morphine exposure in mice uncovers genes involved in food intake. Neuroscience 2010; 167:554-66. [PMID: 20144693 DOI: 10.1016/j.neuroscience.2010.01.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 01/07/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
Addictive drugs including opioids activate signal transduction pathways that regulate gene expression in the brain. However, changes in CNS gene expression following morphine exposure are poorly understood. We determined changes in gene expression following short- and long-term morphine treatment in the hypothalamus and pituitary using genome-wide DNA microarray analysis and confirmed those alterations in gene expression by real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis. In the hypothalamus, short-term morphine administration up-regulated (at least twofold) 39 genes and down-regulated six genes. Long-term morphine treatment up-regulated 35 genes and down-regulated 51 genes. In the pituitary, short-term morphine administration up-regulated 110 genes and down-regulated 29 genes. Long-term morphine treatment up-regulated 85 genes and down-regulated 37 pituitary genes. Microarray analysis uncovered several genes involved in food intake (neuropeptide Y, agouti-related protein, and cocaine and amphetamine-regulated transcript) whose expression was strongly altered by morphine exposure in either the hypothalamus or pituitary. Subsequent RT-PCR analysis confirmed similar regulation in expression of these genes in the hypothalamus and pituitary. Finally, we found functional correlation between morphine-induced alterations in food intake and regulation of genes involved in this process. Changes in genes related to food intake may uncover new pathways related to some of the physiological effects of opioids.
Collapse
Affiliation(s)
- A Anghel
- Division of Endocrinology, Department of Medicine, Charles Drew University of Medicine and Sciences-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Boghossian S, Park M, York DA. Melanocortin activity in the amygdala controls appetite for dietary fat. Am J Physiol Regul Integr Comp Physiol 2010; 298:R385-93. [DOI: 10.1152/ajpregu.00591.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amygdala is rich in melanocortin 4 receptors. Because the reduction in dietary fat intake after enterostatin is injected in the central nucleus of the amygdala (CeA) is blocked by a melanocortin 4 receptor antagonist, we investigated the role of melanocortin activity in the CeA in regulating food intake and macronutrient choice. Sprague-Dawley rats, fitted with CeA cannulas, were fed either chow, a high-fat (HF) diet, or adapted to a two-choice HF or low-fat (LF) diet. Injections of the MC4R agonist melanotan II (MTII) in the CeA had a dose-dependent inhibitory effect on food intake that lasted for at least 24 h. This response was greater in rats fed a HF diet. The inverse agonist agouti-related protein (AgRP) and antagonist SHU-9119 increased food intake in a dose-dependent manner, with the hyperphagia lasting for 60 h. In rats adapted to a two-choice HF/LF diet, MTII decreased HF consumption but had no effect on LF consumption, resulting in a long-lasting decrease in total calorie intake (−35.5% after 24 h, P < 0.05). Total calorie intake increased in both AgRP- and SHU-9119-treated rats (32 and 109% after 24 h, respectively) as the result of increased intake of HF diet. There was no modification of LF consumption with AgRP treatment and a transient nonsignificant decrease with SHU-9119 treatment. Amygdala brain-derived neurotrophic factor expression was increased by AgRP in fed rats. These results identify the amygdala as a site of action for the melanocortin system to control food intake and dietary preferences.
Collapse
Affiliation(s)
| | - MieJung Park
- Center for Advanced Nutrition, Utah State University, Logan, Utah
| | - David A. York
- Center for Advanced Nutrition, Utah State University, Logan, Utah
| |
Collapse
|
12
|
Bromberg Y, Overton J, Vaisse C, Leibel RL, Rost B. In silico mutagenesis: a case study of the melanocortin 4 receptor. FASEB J 2009; 23:3059-69. [PMID: 19417090 PMCID: PMC2735358 DOI: 10.1096/fj.08-127530] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The melanocortin 4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) and a key molecule in the regulation of energy homeostasis. At least 159 substitutions in the coding region of human MC4R (hMC4R) have been described experimentally; over 80 of those occur naturally, and many have been implicated in obesity. However, assessment of the presumably functionally essential residues remains incomplete. Here we have performed a complete in silico mutagenesis analysis to assess the functional essentiality of all possible nonnative point mutants in the entire hMC4R protein (332 residues). We applied SNAP, which is a method for quantifying functional consequences of single amino acid (AA) substitutions, to calculate the effects of all possible substitutions at each position in the hMC4R AA sequence. We compiled a mutability score that reflects the degree to which a particular residue is likely to be functionally important. We performed the same experiment for a paralogue human melanocortin receptor (hMC1R) and a mouse orthologue (mMC4R) in order to compare computational evaluations of highly related sequences. Three results are most salient: 1) our predictions largely agree with the available experimental annotations; 2) this analysis identified several AAs that are likely to be functionally critical, but have not yet been studied experimentally; and 3) the differential analysis of the receptors implicates a number of residues as specifically important to MC4Rs vs. other GPCRs, such as hMC1R.—Bromberg, Y., Overton, J., Vaisse, C., Leibel, R. L., Rost, B. In silico mutagenesis: a case study of the melanocortin 4 receptor.
Collapse
Affiliation(s)
- Yana Bromberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| | | | | | | | | |
Collapse
|
13
|
Sánchez E, Rubio VC, Thompson D, Metz J, Flik G, Millhauser GL, Cerdá-Reverter JM. Phosphodiesterase inhibitor-dependent inverse agonism of agouti-related protein on melanocortin 4 receptor in sea bass (Dicentrarchus labrax). Am J Physiol Regul Integr Comp Physiol 2009; 296:R1293-306. [PMID: 19225141 DOI: 10.1152/ajpregu.90948.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor mainly expressed in the central nervous system of vertebrates. Activation of the MC4R leads to a decrease in food intake, whereas inactivating mutations are a genetic cause of obesity. The binding of agouti-related protein (AGRP) reduces not only agonist-stimulated cAMP production (competitive antagonist) but also the basal activity of the receptor, as an inverse agonist. Transgenic zebrafish overexpressing AGRP display increased food intake and linear growth, indicative of a physiological role for the melanocortin system in the control of the energy balance in fish. We report on the cloning, pharmacological characterization, tissue distribution, and detailed brain mapping of a sea bass (Dicentrarchus labrax) MC4R ortholog. Sea bass MC4R is profusely expressed within food intake-controlling pathways of the fish brain. However, the activity of the melanocortin system during progressive fasting does not depend on the hypothalamic/pituitary proopiomelanocortin (POMC) and MC4R expression, which suggests that sea bass MC4R is constitutively activated and regulated by AGRP binding. We demonstrate that AGRP acts as competitive antagonist and reduces MTII-induced cAMP production. AGRP also decreases the basal activity of the receptor as an inverse agonist. This observation suggests that MC4R is constitutively active and supports the evolutionary conservation of the AGRP/MC4R interactions. The inverse agonism, but not the competitive antagonism, depends on the presence of a phosphodiesterase inhibitor (IBMX). This suggests that inverse agonism and competitive antagonism operate through different intracellular signaling pathways, a view that opens up new targets for the treatment of melanocortin-induced metabolic syndrome.
Collapse
Affiliation(s)
- Elisa Sánchez
- Dept. of Fish Reproductive Physiology, Instituto de Acuicultura de Torre de la Sal, Ribera de Cabanes, Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Park M, Oh H, York DA. Enterostatin affects cyclic AMP and ERK signaling pathways to regulate Agouti-related protein (AgRP) expression. Peptides 2009; 30:181-90. [PMID: 19059445 DOI: 10.1016/j.peptides.2008.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 10/25/2022]
Abstract
Enterostatin, a gut-brain peptide, inhibits dietary fat intake in rats. The purpose of this study was to identify the intracellular signaling pathways that are responsive to enterostatin and that modulate the effects of enterostatin on the expression of Agouti-related protein (AgRP). We used the hypothalamic GT1-7 neuronal cell line to identify the effects of enterostatin on cyclic AMP and ERK signaling using conventional immunoassays or Western blots to assay the activity of these pathways. Enterostatin enhanced the level of cyclic AMP, PKA(RIIbeta) and phospho-CREB and increased pERK levels in GT 1-7 cells. The effects on pERK were rapid (7.5 min) and dose-dependent. These signaling responses were blocked by an antibody to the enterostatin receptor (beta subunit of F1-ATPase), by the pERK inhibitor U0126 and by the P2Y receptor antagonist Suramin. Enterostatin showed a biphasic effect on AgRP mRNA, initially increasing but subsequently decreasing the levels. The cyclic AMP activator Sp-cAMP increased AgRP mRNA expression. Transfection of a wild type ERK construct reduced AgRP mRNA levels. Enterostatin inhibited expression of Krüppel-like factor 4 (KLF4), a transcriptional regulator of AgRP. KLF4 gene expression was increased by Sp-cAMP but decreased by wild-type ERK expression. U0126 blocked the effect of enterostatin on KLF4 expression. We conclude that enterostatin binding to its receptor activates the pERK pathway to inhibit AgRP gene expression but may enhance AgRP expression through activation of the cyclic AMP pathway. These pathways probably mediate the enterostatin inhibition of dietary fat intake.
Collapse
Affiliation(s)
- Miejung Park
- Center for Advanced Nutrition, Utah State University, 4715 Old Main Hill, Logan, UT 84322-4715, USA
| | | | | |
Collapse
|
15
|
Hofbauer KG, Lecourt AC, Peter JC. Antibodies as pharmacologic tools for studies on the regulation of energy balance. Nutrition 2008; 24:791-7. [PMID: 18662861 DOI: 10.1016/j.nut.2008.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Active immunization in rats may serve several purposes: the production of a disease-like phenotype, the generation of pharmacologic tools, and the development of clinically useful therapies. We selected the melanocortin-4 receptor (MC4R) as a target because its blockade could provide a treatment for anorexia and cachexia. METHODS We used a sequence of the N-terminal (NT) domain of the MC4R as an antigen. Rats immunized against the NT peptide produced specific MC4R antibodies (Abs) that were purified and characterized in vitro and in vivo. RESULTS The Abs acted as inverse agonists and reduced under basal conditions the production of cyclic adenosine monophosphate in HEK-293 cells expressing the human MC4R. Rats immunized against the NT peptide developed a phenotype consistent with hypothalamic MC4R blockade, i.e., increased food intake and body weight, liver and fat-pad weights, hepatic steatosis, and increased plasma triacylglycerols. With a high-fat diet, plasma insulin levels were significantly increased. In separate experiments an increase in food intake was observed after injection of purified MC4R Abs into the third ventricle. When lipopolysaccharide was administered in NT-immunized rats the reduction of food intake was partly prevented in this model of cytokine-induced anorexia. CONCLUSION Our results show that active immunization of rats against the MC4R resulted in the generation of specific Abs that stimulated food intake by acting as inverse agonists of the hypothalamic MC4R. Pharmacologically active monoclonal MC4R Abs could be the starting point for the development of novel treatments for patients with anorexia or cachexia.
Collapse
Affiliation(s)
- Karl G Hofbauer
- Applied Pharmacology, Biozentrum, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
16
|
Tolle V, Low MJ. In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes 2008; 57:86-94. [PMID: 17909095 DOI: 10.2337/db07-0733] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Melanocyte-stimulating hormone (MSH) peptides processed from proopiomelanocortin (POMC) regulate energy homeostasis by activating neuronal melanocortin receptor (MC-R) signaling. Agouti-related peptide (AgRP) is a naturally occurring MC-R antagonist but also displays inverse agonism at constitutively active melanocortin-4 receptor (MC4-R) expressed on transfected cells. We investigated whether AgRP functions similarly in vivo using mouse models that lack all neuronal MSH, thereby precluding competitive antagonism of MC-R by AgRP. RESEARCH DESIGN AND METHODS Feeding and metabolic effects of the MC-R agonist melanotan II (MTII), AgRP, and ghrelin were investigated after intracerebroventricular injection in neural-specific POMC-deficient (Pomc(-/-)Tg/+) and global POMC-deficient (Pomc(-/-)) mice. Gene expression was quantified by RT-PCR. RESULTS Hyperphagic POMC-deficient mice were more sensitive than wild-type mice to the anorectic effects of MTII. Hypothalamic melanocortin-3 (MC3)/4-R mRNAs in POMC-deficient mice were unchanged, suggesting increased receptor sensitivity as a possible mechanism for the heightened anorexia. AgRP reversed MTII-induced anorexia in both mutant strains, demonstrating its ability to antagonize MSH agonists at central MC3/4-R, but did not produce an acute orexigenic response by itself. The action of ghrelin was attenuated in Pomc(-/-)Tg/+ mice, suggesting decreased sensitivity to additional orexigenic signals. However, AgRP induced delayed and long-lasting modifications of energy balance in Pomc(-/-)Tg/+, but not glucocorticoid-deficient Pomc(-/-) mice, by decreasing oxygen consumption, increasing the respiratory exchange ratio, and increasing food intake. CONCLUSIONS These data demonstrate that AgRP can modulate energy balance via a mechanism independent of MSH and MC3/4-R competitive antagonism, consistent with either inverse agonist activity at MC-R or interaction with a distinct receptor.
Collapse
Affiliation(s)
- Virginie Tolle
- Center for the Study of Weight Regulation and Associated Disorders, Oregon Health and Science University, Portland, Oregon, USA.
| | | |
Collapse
|
17
|
Burgueño AL, Landa MS, Schuman ML, Alvarez AL, Carabelli J, García SI, Pirola CJ. Association between diencephalic thyroliberin and arterial blood pressure in agouti-yellow and ob/ob mice may be mediated by leptin. Metabolism 2007; 56:1439-43. [PMID: 17884458 DOI: 10.1016/j.metabol.2007.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 06/25/2007] [Indexed: 11/28/2022]
Abstract
Leptin, a hormone secreted by the adipose tissue, stimulates anorexigenic peptides and also inhibits orexigenic peptides in hypothalamic arcuate nuclei-located neurons. It also counteracts the starvation-induced suppression of thyroid hormones by up-regulating the expression of preproTRH gene. On the other hand, in addition to its role as a modulator of the thyroid-hypothalamic-hypophysial axis, thyrotropin-releasing hormone (TRH) acts as a modulator of the cardiovascular system. In fact, we reported that overexpression of diencephalic TRH (dTRH) induces hypertension. We have recently shown that, in rats with obesity-induced hypertension, hyperleptinemia may produce an increase of dTRH together with an elevation of arterial blood pressure (ABP) through an increase of sympathetic activity and that these alterations were reversed by antisense oligonucleotide and small interfering RNA against preproTRH treatments. Here we explore the possible role of dTRH as a mediator involved in leptin-induced hypertension in 2 obesity mouse models: agouti-yellow mice, which are hyperleptinemic and hypertensive, and ob/ob mice, which lack functional circulating leptin. These 2 models share some characteristics, but ob/ob mice show lower ABP and plasma catecholamines levels. Then, for the first time, we report that there is a clear association between ABP and dTRH levels in both mouse models, as we have found that dTRH content was elevated in agouti-yellow mice and diminished in ob/ob mice compared with their controls. We also show that, after 3 days of subcutaneous leptin injections (10 microg/12 hours), ABP and dTRH increased significantly in ob/ob mice with no alterations of thyroid hormone levels. These results add evidence to the putative molecular mechanisms for the strong association between obesity and hypertension.
Collapse
Affiliation(s)
- Adriana L Burgueño
- Cardiología Molecular, Instituto de Investigaciones Médicas A Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
18
|
Peter JC, Nicholson JR, Heydet D, Lecourt AC, Hoebeke J, Hofbauer KG. Antibodies against the melanocortin-4 receptor act as inverse agonists in vitro and in vivo. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2151-8. [PMID: 17322114 DOI: 10.1152/ajpregu.00878.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functionally active antibodies (Abs) against central G-protein-coupled receptors have not yet been reported. We selected the hypothalamic melanocortin-4 receptor (MC4-R) as a target because of its crucial role in the regulation of energy homeostasis. A 15 amino acid sequence of the N-terminal (NT) domain was used as an antigen. This peptide showed functional activity in surface plasmon resonance experiments and in studies on HEK-293 cells overexpressing the human MC4-R (hMC4-R). Rats immunized against the NT peptide produced specific antibodies, which were purified and characterized in vitro. In HEK-293 cells, rat anti-NT Abs showed specific immunofluorescence labeling of hMC4-R. They reduced the production of cAMP under basal conditions and after stimulation with a synthetic MC4-R agonist. Rats immunized against the NT peptide developed a phenotype consistent with MC4-R blockade, that is, increased food intake and body weight, increased liver and fat pad weight, and elevated plasma triglycerides. In a separate experiment in rats, an increase in food intake could be produced after injection of purified Abs into the third ventricle. Similar results were obtained in rats injected with anti-NT Abs raised in rabbits. Our data show for the first time that active immunization of rats against the NT sequence of the MC4-R results in specific Abs, which appear to stimulate food intake by acting as inverse agonists in the hypothalamus.
Collapse
|