1
|
Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol 2021; 192:114669. [PMID: 34224692 DOI: 10.1016/j.bcp.2021.114669] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) is an 84-amino-acid peptide hormone that is secreted by the parathyroid gland. It has different administration modes in bone tissue through which it promotes bone formation (intermittent administration) and bone resorption (continuous administration) and has great potential for application in sbone defect repair. PTH regulates bone metabolism by binding to PTH1R. PTH plays an osteogenic role by acting directly on mesenchymal stem cells, cells with an osteoblastic lineage, osteocytes, and T cells. It also participates as an osteoclast by indirectly acting on osteoclast precursor cells and osteoclasts and directly acting on T cells. In these cells, PTH activates the Wnt signaling, cAMP/PKA, cAMP/PKC, and RANKL/RANK/OPG pathways and other signaling pathways. Although PTH(1-34), also known as teriparatide, has been used clinically, it still has some disadvantages. Developing improved PTH-related peptides is a potential solution to teriparatide's shortcomings. The action mechanism of these PTH-related peptides is not exactly the same as that of PTH. Thus, the mechanisms of PTH and PTH-related peptides in bone metabolism were reviewed in this paper.
Collapse
|
2
|
Chunxiao W, Chengying G, Liang J, Xiaoming S, Feng G, Junting Y, Wenhui W, Yu W, Jingjing L. Pharmacological effects of a recombinant hPTH(1−34) derived peptide on ovariectomized rats. Eur J Pharmacol 2017; 794:193-200. [DOI: 10.1016/j.ejphar.2016.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/01/2022]
|
3
|
Koo AN, Ohe JY, Lee DW, Chun J, Lee HJ, Kwon YD, Lee SC. Bone-regenerative activity of parathyroid hormone-releasing nano-hydroxyapatite/poly(L-lactic acid) hybrid scaffolds. Macromol Res 2015. [DOI: 10.1007/s13233-015-3157-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Polyzos SA, Makras P, Efstathiadou Z, Anastasilakis AD. Investigational parathyroid hormone receptor analogs for the treatment of osteoporosis. Expert Opin Investig Drugs 2014; 24:145-57. [PMID: 25316089 DOI: 10.1517/13543784.2015.973021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Intermittent parathyroid hormone (PTH) administration, acting through multiple signaling pathways, exerts an osteoanabolic effect on the skeleton that surpasses the effect of other antiosteoporotic agents. However, its efficacy is limited by the coupling effect and relatively common adverse events. Thus, the development of more sophisticated PTH receptor analogs seems imperative. AREAS COVERED In this review, the authors summarize the role of PTH signaling pathway in bone remodeling. The authors also summarize investigational analogs targeting this pathway, which may be potential treatments for osteoporosis. EXPERT OPINION β-arrestins are multifunctional cytoplasmic molecules that are decisive for regulating intracellular PTH signaling. Recently, in preclinical studies, arrestin analogs have achieved the anabolic bone effect of PTH without an accompanying increase in bone resorption. However, it is not yet known whether these analogs have adverse effects and there are no clinical data for their efficacy to date. On the other hand, several molecules derived either from PTH and PTH-related protein (PTHrP) molecules have been developed. Alternative routes of PTH 1 - 34 delivery (oral, transdermal), the PTH analog ostabolin and the N-terminal PTHrP analogs PTHrP 1 - 36 and abaloparatide, have recently been or are currently being tested in clinical trials and are more likely to become available for use in the near future.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine , Boston, MA , USA
| | | | | | | |
Collapse
|
5
|
Stamm FP, Calegari GZ, de Freitas GW, Souto RB, Porto LP, Cardoso CDA, Dalmora SL. Assessment of recombinant human parathyroid hormone: correlation of LC methods with bioassays. Analyst 2013; 138:1419-26. [PMID: 23324983 DOI: 10.1039/c2an36583a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversed-phase liquid chromatography (RP-LC) and size exclusion liquid chromatography (SE-LC) methods were validated for the assessment of recombinant human parathyroid hormone (rhPTH 1-34). The gradient RP-LC method was carried out on a Zorbax 300 SB C(18) column (150 mm × 4.6 mm i.d.), maintained at 40 °C. The mobile phase A consisted of 0.1 M sodium sulphate buffer, pH 2.3, and the mobile phase B was acetonitrile. The SE-LC method was carried out on a BioSep-SEC-S 2000 column (300 mm × 7.8 mm i.d.), maintained at 25 °C. The mobile phase consisted of 0.1 M phosphoric acid buffer, pH 2.5, run isocratically at a flow rate of 0.7 mL min(-1). Chromatographic separation was obtained with retention times of 12.2 min, and 13.2 min, and was linear over the concentration range of 1-250 μg mL(-1) (r(2) = 0.9997) and 2-300 μg mL(-1) (r(2) = 0.9993), respectively, for RP-LC and SE-LC, with photodiode array (PDA) detection at 214 nm. Specificity was established in degradation studies, which also showed that there was no interference of the excipients. Equally, the accuracy was 100.49% and 100.22%, with bias lower than 1.12% and 0.81% respectively. Moreover, the in vitro cytotoxicity test of related proteins and higher molecular weight forms showed significant differences (p < 0.05). Chromatographic methods were applied for the content/potency assessment of rhPTH and related proteins in biopharmaceutical injectable dosage forms, and the results were correlated with those of in vitro and in vivo bioassays. It is concluded that the employment of the methods in conjunction allows a great improvement in monitoring stability, contributing to evaluate alternatives which improve the quality control and thereby assure the therapeutic efficacy of the biotechnology-derived medicine.
Collapse
Affiliation(s)
- Fernanda P Stamm
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Chunxiao W, Yu Z, Wentao L, Jingjing L, Jiahui Y, Qingmei C. Impacts of the N-terminal fragment analog of human parathyroid hormone on structure, composition and biomechanics of bone. Eur J Pharm Sci 2012; 47:926-33. [DOI: 10.1016/j.ejps.2012.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/27/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|
7
|
Pal K, Melcher K, Xu HE. Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacol Sin 2012; 33:300-11. [PMID: 22266723 DOI: 10.1038/aps.2011.170] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Class B G-protein-coupled receptors (GPCRs) are receptors for peptide hormones that include glucagon, parathyroid hormone, and calcitonin. These receptors are involved in a wide spectrum of physiological activities, from metabolic regulation and stress control to development and maintenance of the skeletal system. As such, they are important drug targets for the treatment of diabetes, osteoporosis, and stress related disorders. Class B GPCRs are organized into two modular domains: an extracellular domain (ECD) and a helical bundle that contains seven transmembrane helices (TM domain). The ECD is responsible for the high affinity and specificity of hormone binding, and the TM domain is required for receptor activation and signal coupling to downstream G-proteins. Although the structure of the full-length receptor remains unknown, the ECD structures have been well characterized for a number of Class B GPCRs, revealing a common fold for ligand recognition. This review summarizes the general structural principles that guide hormone binding by Class B ECDs and their implications in the design of peptide hormone analogs for therapeutic purposes.
Collapse
|
8
|
Chunxiao W, Jingjing L, Yire X, Jingning L, Kai K, Liang S, Yi L, Rasco B. Biosynthesis of a novel recombinant peptide derived from hPTH(1–34). Protein Expr Purif 2011; 79:156-63. [DOI: 10.1016/j.pep.2011.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
|
9
|
Yu X, Wei M. Preparation and evaluation of parathyroid hormone incorporated CaP coating via a biomimetic method. J Biomed Mater Res B Appl Biomater 2011; 97:345-54. [PMID: 21432993 DOI: 10.1002/jbm.b.31820] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/07/2010] [Accepted: 12/29/2010] [Indexed: 11/11/2022]
Abstract
Parathyroid hormone (PTH) is a potent bone growth stimulator used for osteoporosis treatment. However, the inconvenience of daily administration and side effect of systemic exposure severely limit its use in clinical applications. Local, controlled delivery is a promising approach which can maintain therapeutic concentration locally for a long period. In this study, PTH was incorporated into a biomimetic calcium phosphate (CaP) coating via a coprecipitation process in a modified simulated body fluid (m-SBF). It was found that PTH was successfully incorporated into biomimetic CaP coating on titanium surface with a high incorporation efficiency. The incorporation of PTH into coatings had significantly changed the coating morphology, but the composition of the coating remained unchanged. Localized release of PTH had occurred in vitro, and was accompanied with partial dissolution of CaP coatings. Cell culture study demonstrated that the PTH released from CaP coatings fully retained its bioactivity. It had improved substantially MC3T3-E1 cell proliferation but slightly delayed the expression of alkaline phosphatase (ALP) of the cells. In summary, our results have shown that CaP coatings incorporated with PTH may be a promising approach for osteoporosis and other bone-related disease treatment in the future.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
10
|
Preparation of a peptide vaccine against GnRH by a bioprocess system based on asparaginase. Vaccine 2010; 28:4984-8. [DOI: 10.1016/j.vaccine.2010.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 01/18/2023]
|
11
|
Study on preparation and unique properties of a novel insulin analogue with N-terminal Arg-4, Pro-3, Lys-2, Pro-1extension at insulin B-chain. ACTA ACUST UNITED AC 2009; 157:92-8. [DOI: 10.1016/j.regpep.2009.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/30/2009] [Accepted: 06/03/2009] [Indexed: 11/21/2022]
|
12
|
Chapter MC, White CM, DeRidder A, Chadwick W, Martin B, Maudsley S. Chemical modification of class II G protein-coupled receptor ligands: frontiers in the development of peptide analogs as neuroendocrine pharmacological therapies. Pharmacol Ther 2009; 125:39-54. [PMID: 19686775 DOI: 10.1016/j.pharmthera.2009.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 01/08/2023]
Abstract
Recent research and clinical data have begun to demonstrate the huge potential therapeutic importance of ligands that modulate the activity of the secretin-like, Class II, G protein-coupled receptors (GPCRs). Ligands that can modulate the activity of these Class II GPCRs may have important clinical roles in the treatment of a wide variety of conditions such as osteoporosis, diabetes, amyotrophic lateral sclerosis and autism spectrum disorders. While these receptors present important new therapeutic targets, the large glycoprotein nature of their cognate ligands poses many problems with respect to therapeutic peptidergic drug design. These native peptides often exhibit poor bioavailability, metabolic instability, poor receptor selectivity and resultant low potencies in vivo. Recently, increased attention has been paid to the structural modification of these peptides to enhance their therapeutic efficacy. Successful modification strategies have included d-amino acid substitutions, selective truncation, and fatty acid acylation of the peptide. Through these and other processes, these novel peptide ligand analogs can demonstrate enhanced receptor subtype selectivity, directed signal transduction pathway activation, resistance to proteolytic degradation, and improved systemic bioavailability. In the future, it is likely, through additional modification strategies such as addition of circulation-stabilizing transferrin moieties, that the therapeutic pharmacopeia of drugs targeted towards Class II secretin-like receptors may rival that of the Class I rhodopsin-like receptors that currently provide the majority of clinically used GPCR-based therapeutics. Currently, Class II-based drugs include synthesized analogs of vasoactive intestinal peptide for type 2 diabetes or parathyroid hormone for osteoporosis.
Collapse
Affiliation(s)
- Megan C Chapter
- Receptor Pharmacology Unit, Laboratory of Neuroscience, National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., Baltimore MD 21224, USA
| | | | | | | | | | | |
Collapse
|