1
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
2
|
Deci MB, Liu M, Dinh QT, Nguyen J. Precision engineering of targeted nanocarriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1511. [PMID: 29436157 DOI: 10.1002/wnan.1511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Since their introduction in 1980, the number of advanced targeted nanocarrier systems has grown considerably. Nanocarriers capable of targeting single receptors, multiple receptors, or multiple epitopes have all been used to enhance delivery efficiency and selectivity. Despite tremendous progress, preclinical studies and clinically translatable nanotechnology remain disconnected. The disconnect in targeting efficacy may stem from poorly-understood factors such as receptor clustering, spatial control of targeting ligands, ligand mobility, and ligand architecture. Further, the relationship between receptor distribution and ligand architecture remains elusive. Traditionally, targeted nanocarriers were engineered assuming a "static" target. However, it is becoming increasingly clear that receptor expression patterns change in response to external stimuli and disease progression. Here, we discuss how cutting-edge technologies will enable a better characterization of the spatiotemporal distribution of membrane receptors and their clustering. We further describe how this will enable the design of new nanocarriers that selectively target the site of disease. Ultimately, we explore how the precision engineering of targeted nanocarriers that adapt to receptor dynamics will have the potential to drive nanotechnology to the forefront of therapy and make targeted nanomedicine a clinical reality. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| | - Maixian Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| |
Collapse
|
3
|
Ruscica M, Magni P, Steffani L, Gatto F, Albertelli M, Rametta R, Valenti L, Ameri P, Magnaghi V, Culler MD, Minuto F, Ferone D, Arvigo M. Characterization and sub-cellular localization of SS1R, SS2R, and SS5R in human late-stage prostate cancer cells: effect of mono- and bi-specific somatostatin analogs on cell growth. Mol Cell Endocrinol 2014; 382:860-70. [PMID: 24211300 DOI: 10.1016/j.mce.2013.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Somatostatin (SST) and SST receptors (SS1R, SS2R, SS3R, SS4R and SS5R) appear to play a significant role in the progression of human prostate cancer (PCa), which is associated with heterogeneity of SSRs expression and specific cell localization as we already demonstrated in the LNCaP cell line, an in vitro model of human androgen-dependent PCa. In this study, PC-3 and DU-145 human castration-resistant PCa cells were found to express all SSRs, while LNCaP expressed all but SS4R. A 48-h treatment with BIM-23244 (SS2R/SS5R) or BIM-23926 (SS1R) SST analogs was more effective in inhibiting cell proliferation, compared to BIM-23120 (SS2R), BIM-23206 (SS5R) and BIM-23704 (SS1R/SS2R). BIM-23926 (SS1R) treatment increased the amount of p21 and decreased phosphorylated (p) ERK1/2. BIM-23244 (SS2R/SS5R) led to p21 increment only in PC-3 cells, and to pERK1/2 reduction in both cell lines. SS1R/SS2R and SS2R/SS5R receptor dimers were natively present on cell membrane and their amount was increased by BIM-23704 (SS1R/SS2R) or BIM-23244 (SS2R/SS5R) treatment, respectively. SS1R, SS2R and SS5R were differently distributed among nuclear, lysosomal and microsomal compartment, according to their different recycling dynamics. These results show that, in PC-3, DU-145 and LNCaP cells, activation of SS1R and SS2R/SS5R leads to relevant antiproliferative effects.
Collapse
Affiliation(s)
- M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - P Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - L Steffani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - F Gatto
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - M Albertelli
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - R Rametta
- Pathophysiology and Transplantation, Università degli Studi di Milano, UO Medicina Interna 1B, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - L Valenti
- Pathophysiology and Transplantation, Università degli Studi di Milano, UO Medicina Interna 1B, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - P Ameri
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - V Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M D Culler
- Biomeasure Incorporated/IPSEN, Milford, MA, USA
| | - F Minuto
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - D Ferone
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy.
| | - M Arvigo
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| |
Collapse
|
4
|
Kharmate G, Rajput PS, Lin YC, Kumar U. Inhibition of tumor promoting signals by activation of SSTR2 and opioid receptors in human breast cancer cells. Cancer Cell Int 2013; 13:93. [PMID: 24059654 PMCID: PMC3852783 DOI: 10.1186/1475-2867-13-93] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Somatostatin receptors (SSTRs) and opioid receptors (ORs) belong to the superfamily of G-protein coupled receptors and function as negative regulators of cell proliferation in breast cancer. In the present study, we determined the changes in SSTR subtype 2 (SSTR2) and μ, δ and κ-ORs expression, signaling cascades and apoptosis in three different breast cancer cells namely MCF-7, MDA-MB231 and T47D. Methods Immunocytochemistry and western blot analysis were employed to study the colocalization and changes in MAPKs (ERK1/2 and p38), cell survival pathway (PI3K/AKT) and tumor suppressor proteins (PTEN and p53) in breast cancer cell lines. The nature of cell death upon activation of SSTR2 or OR was analysed using flow cytometry analysis. Results The activation of SSTR2 and ORs modulate MAPKs (ERK1/2 and p38) in cell dependent and possibly estrogen receptor (ER) dependent manner. The activation of tumor suppressor proteins phosphatase and tensin homolog (PTEN) and p53 antagonized the PI3K/AKT cell survival pathway. Flow cytometry analyses reveal increased necrosis as opposed to apoptosis in MCF-7 and T47D cells when compared to ER negative MDA-MB231 cells. Furthermore, receptor and agonist dependent expression of ORs in SSTR2 immunoprecipitate suggest that SSTR2 and ORs might interact as heterodimers and inhibit epidermal growth factor receptor phosphorylation. Conclusion Taken together, findings indicate a new role for SSTR2/ORs in modulation of signaling pathways involved in cancer progression and provide novel therapeutic approaches in breast cancer treatment.
Collapse
Affiliation(s)
- Geetanjali Kharmate
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| | | | | | | |
Collapse
|
5
|
Ben-Shlomo A, Pichurin O, Khalafi R, Zhou C, Chesnokova V, Ren SG, Liu NA, Melmed S. Constitutive somatostatin receptor subtype 2 activity attenuates GH synthesis. Endocrinology 2013; 154:2399-409. [PMID: 23696564 PMCID: PMC3689284 DOI: 10.1210/en.2013-1132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Somatostatin signals predominantly through somatostatin receptor (SSTR) subtype 2 to attenuate GH release. However, the independent role of the receptor in regulating GH synthesis is unclear. Because we had previously demonstrated constitutive SSTR2 activity in mouse corticotrophs, we now analyzed GH regulation in rat pituitary somatotroph (GC) tumor cells, which express SSTR2 exclusively and are devoid of endogenous somatostatin ligand. We demonstrate that moderately stable SSTR2 overexpression (GpSSTR2(WT) cells) was associated with decreased GH promoter activity, GH mRNA, and hormone levels compared with those of control transfectants (GpCon cells). In contrast, levels of GH mRNA and peptide and GH promoter activity were unchanged in GpSSTR2(DRY) stable transfectants moderately expressing DRY motif mutated SSTR2 (R140A). GpSSTR(2DRY) did not exhibit an enhanced octreotide response as did GpSSTR2(WT) cells; however, both SSTR2(WT)-enhanced yellow fluorescent protein (eYFP) and SSTR2(DRY)-eYFP internalized on octreotide treatment. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, increased GH synthesis in wild-type GC cells and primary pituitary cultures. GpSSTR2(WT) cells induced GH synthesis more strongly on SAHA treatment, evident by both higher GH peptide and mRNA levels compared with the moderate but similar GH increase observed in GpCon and GpSSTR2(DRY) cells. In vivo SAHA also increased GH release from GpSSTR2(WT) but not from control xenografts. Endogenous rat GH promoter chromatin immunoprecipitation showed decreased baseline acetylation of the GH promoter with exacerbated acetylation after SAHA treatment in GpSSTR2(WT) compared with that of either GpSSTR(2DRY) or control cells, the latter 2 transfectants exhibiting similar GH promoter acetylation levels. In conclusion, modestly increased SSTR2 expression constitutively decreases GH synthesis, an effect partially mediated by GH promoter histone deacetylation.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- The Pituitary Center, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zou A, Chen Y, Huo M, Wang J, Zhang Y, Zhou J, Zhang Q. In Vivo Studies of Octreotide-Modified N-Octyl-O, N-Carboxymethyl Chitosan Micelles Loaded with Doxorubicin for Tumor-Targeted Delivery. J Pharm Sci 2013; 102:126-35. [DOI: 10.1002/jps.23341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 08/19/2012] [Accepted: 09/25/2012] [Indexed: 01/02/2023]
|
7
|
Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:105-42. [DOI: 10.1016/b978-0-12-386931-9.00005-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Sreenivasan VKA, Kim EJ, Goodchild AK, Connor M, Zvyagin AV. Targeting somatostatin receptors using in situ-bioconjugated fluorescent nanoparticles. Nanomedicine (Lond) 2012; 7:1551-60. [DOI: 10.2217/nnm.12.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: The author’s group report, for the first time, on the development of a quantum dot (QD)-based fluorescent somatostatin (somatotropin release-inhibiting factor [SRIF]) probe that enables specific targeting of somatostatin receptors. Receptor-mediated endocytosis of SRIF was imaged using this probe. Materials & methods: Biotinylated SRIF-analog (SRIF-B) and streptavidin (Sav)-coated QDs were used for the probe synthesis. A dye-labeled streptavidin complex was used to evaluate the effect of Sav binding on the activity of SRIF-B. Results: A preconjugated probe of the form SRIF-B:Sav-QD, was inactive and unable to undergo receptor-mediated endocytosis. An alternative in situ bioconjugation strategy, where SRIF-B and Sav-QD were added in two consecutive steps, enabled visualization of the receptor-mediated endocytosis. The process of Sav binding appeared to be responsible for the inactivity in the first case. Conclusion: The in situ two-step bioconjugation strategy allowed QDs to be targeted to somatostatin receptors. This strategy should enable flexible fluorescent tagging of SRIF for the investigation of molecular trafficking in cells and targeted delivery in live animals. Original submitted 14 November 2011; Revised submitted 27 February 2012; Published online 20 July 2012
Collapse
Affiliation(s)
| | - Eun J Kim
- Department of Science Education – Chemical Education Major, Daegu University, Gyeonbuk, Republic of Korea
| | | | | | | |
Collapse
|
9
|
War SA, Kumar U. Coexpression of human somatostatin receptor-2 (SSTR2) and SSTR3 modulates antiproliferative signaling and apoptosis. J Mol Signal 2012; 7:5. [PMID: 22651821 PMCID: PMC3403965 DOI: 10.1186/1750-2187-7-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 05/31/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Somatostatin (SST) via five Gi coupled receptors namely SSTR1-5 is known to inhibit cell proliferation by cytostatic and cytotoxic mechanisms. Heterodimerization plays a crucial role in modulating the signal transduction pathways of SSTR subtypes. In the present study, we investigated human SSTR2/SSTR3 heterodimerization, internalization, MAPK signaling, cell proliferation and apoptosis in HEK-293 cells in response to SST and specific agonists for SSTR2 and SSTR3. RESULTS Although in basal conditions, SSTR2 and SSTR3 colocalize at the plasma membrane and exhibit heterodimerization, the cell surface distribution of both receptors decreased upon agonist activation and was accompanied by a parallel increase in intracellular colocalization. Receptors activation by SST and specific agonists significantly decreased cAMP levels in cotransfected cells in comparison to control. Agonist-mediated modulation of pERK1/2 was time and concentration-dependent, and pronounced in serum-deprived conditions. pERK1/2 was inhibited in response to SST; conversely receptor-specific agonist treatment caused inhibition at lower concentration and activation at higher concentration. Strikingly, ERK1/2 phosphorylation was sustained upon prolonged treatment with SST but not with receptor-specific agonists. On the other hand, SST and receptor-specific agonists modulated p38 phosphorylation time-dependently. The receptor activation in cotransfected cells exhibits Gi-dependent inhibition of cell proliferation attributed to increased PARP-1 expression and TUNEL staining, whereas induction of p21 and p27Kip1 suggests a cytostatic effect. CONCLUSION Our study provides new insights in SSTR2/SSTR3 mediated signaling which might help in better understanding of the molecular interactions involving SSTRs in tumor biology.
Collapse
Affiliation(s)
- Sajad A War
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
10
|
O'Dowd BF, Ji X, O'Dowd PB, Nguyen T, George SR. Disruption of the mu-delta opioid receptor heteromer. Biochem Biophys Res Commun 2012; 422:556-60. [PMID: 22583900 DOI: 10.1016/j.bbrc.2012.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 01/07/2023]
Abstract
The crystal structure of the mu and kappa opioid receptors has revealed dimeric structural arrangements. Mu-delta receptors heteromers also exist and we have identified discrete cytoplasmic regions in each receptor required for oligomer formation. In the carboxyl tail of the delta receptor we identified three glycine residues (-GGG), substitution of any of these residues prevented heteromer formation. In intracellular loop 3 of both mu and delta receptors we identified three residues (-SVR), substitution of any of these residues prevented heteromer formation.
Collapse
Affiliation(s)
- Brian F O'Dowd
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | |
Collapse
|
11
|
Somvanshi RK, Kumar U. Pathophysiology of GPCR Homo- and Heterodimerization: Special Emphasis on Somatostatin Receptors. Pharmaceuticals (Basel) 2012; 5:417-46. [PMID: 24281555 PMCID: PMC3763651 DOI: 10.3390/ph5050417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are cell surface proteins responsible for translating >80% of extracellular reception to intracellular signals. The extracellular information in the form of neurotransmitters, peptides, ions, odorants etc is converted to intracellular signals via a wide variety of effector molecules activating distinct downstream signaling pathways. All GPCRs share common structural features including an extracellular N-terminal, seven-transmembrane domains (TMs) linked by extracellular/intracellular loops and the C-terminal tail. Recent studies have shown that most GPCRs function as dimers (homo- and/or heterodimers) or even higher order of oligomers. Protein-protein interaction among GPCRs and other receptor proteins play a critical role in the modulation of receptor pharmacology and functions. Although ~50% of the current drugs available in the market target GPCRs, still many GPCRs remain unexplored as potential therapeutic targets, opening immense possibility to discover the role of GPCRs in pathophysiological conditions. This review explores the existing information and future possibilities of GPCRs as tools in clinical pharmacology and is specifically focused for the role of somatostatin receptors (SSTRs) in pathophysiology of diseases and as the potential candidate for drug discovery.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
12
|
Birnkammer T, Spickenreither A, Brunskole I, Lopuch M, Kagermeier N, Bernhardt G, Dove S, Seifert R, Elz S, Buschauer A. The Bivalent Ligand Approach Leads to Highly Potent and Selective Acylguanidine-Type Histamine H2 Receptor Agonists. J Med Chem 2012; 55:1147-60. [DOI: 10.1021/jm201128q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tobias Birnkammer
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Anja Spickenreither
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Irena Brunskole
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Miroslaw Lopuch
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Nicole Kagermeier
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Günther Bernhardt
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Stefan Dove
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Roland Seifert
- Institute
of Pharmacology, Medical School of Hannover, D-30625 Hannover, Germany
| | - Sigurd Elz
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Armin Buschauer
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| |
Collapse
|
13
|
Plöckinger U. Medical therapy of acromegaly. Int J Endocrinol 2012; 2012:268957. [PMID: 22550484 PMCID: PMC3328958 DOI: 10.1155/2012/268957] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 12/18/2022] Open
Abstract
This paper outlines the present status of medical therapy of acromegaly. Indications for permanent postoperative treatment, postirradiation treamtent to bridge the interval until remission as well as primary medical therapy are elaborated. Therapeutic efficacy of the different available drugs-somatostatin receptor ligands (SRLs), dopamine agonists, and the GH antagonist Pegvisomant-is discussed, as are the indications for and efficacy of their respective combinations. Information on their mechanism of action, and some pharmakokinetic data are included. Special emphasis is given to the difficulties to define remission criteria of acromegaly due to technical assay problems. An algorithm for medical therapy in acromegaly is provided.
Collapse
Affiliation(s)
- U. Plöckinger
- Interdisziplinäres Stoffwechsel-Centrum, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany
- *U. Plöckinger:
| |
Collapse
|
14
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
15
|
Kumar U. Cross-talk and modulation of signaling between somatostatin and growth factor receptors. Endocrine 2011; 40:168-80. [PMID: 21870170 DOI: 10.1007/s12020-011-9524-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/11/2011] [Indexed: 12/19/2022]
Abstract
The process of homo- and/or heterodimerization of G-protein coupled receptors (GPCRs) and receptor tyrosine kinase (RTK) families are crucial for implicating the fundamental properties of receptor proteins including receptor expression, trafficking, and desensitization as well as signal transduction. The members of GPCR and RTK family constitute largest cell surface receptor proteins and regulate physiological functions of cells in response to external and internal stimuli. Notably, GPCRs and RTKs play major role in regulation of several key cellular functions which are associated with several pathological conditions including cancer biology, neurodegenerative and cardiovascular diseases. The focus of this review is to highlight the recent findings on the possible cross-talk between somatostatin receptors (members of GPCR family) and growth factor receptors like epidermal growth factor receptors (members of RTK family). Furthermore, functional consequences of such an interaction in modulation of signaling pathways linked to pathological conditions specifically in cancer are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
16
|
Rajput PS, Kharmate G, Norman M, Liu SH, Sastry BR, Brunicardi CF, Kumar U. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice. PLoS One 2011; 6:e24467. [PMID: 21912697 PMCID: PMC3166321 DOI: 10.1371/journal.pone.0024467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/10/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD). However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST) positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5). METHODS AND FINDINGS To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2). Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32) and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/-) and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice. CONCLUSIONS This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease.
Collapse
Affiliation(s)
- Padmesh S. Rajput
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Geetanjali Kharmate
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Norman
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shi-He Liu
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bhagavatula R. Sastry
- Neuroscience Research Laboratory, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles F. Brunicardi
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ujendra Kumar
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
17
|
Somvanshi RK, Chaudhari N, Qiu X, Kumar U. Heterodimerization of β2 adrenergic receptor and somatostatin receptor 5: Implications in modulation of signaling pathway. J Mol Signal 2011; 6:9. [PMID: 21838893 PMCID: PMC3166894 DOI: 10.1186/1750-2187-6-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/12/2011] [Indexed: 12/17/2022] Open
Abstract
Background In the present study, we describe heterodimerization between human-Somatostatin Receptor 5 (hSSTR5) and β2-Adrenergic Receptor (β2AR) and its impact on the receptor trafficking, coupling to adenylyl cyclase and signaling including mitogen activated protein kinases and calcineurin-NFAT pathways. Methods We used co-immunoprecipitation, photobleaching- fluorescence resonance energy transfer and Fluorescence assisted cell sorting analysis to characterize heterodimerization between SSTR5 and β2AR. Results Our results indicate that hSSTR5/β2AR exist as preformed heterodimers in the basal condition which is enhanced upon co-activation of both receptors. In contrast, the activation of individual receptors leads to the dissociation of heterodimers. Receptor coupling to adenylyl cyclase displayed predominant effect of β2AR, however, somatostatin mediated inhibition of cAMP was enhanced upon blocking β2AR. Our results indicate hSSTR5 mediated significant activation of ERK1/2 and inhibition of phospho-p38. The phospho-NFAT level was enhanced in cotransfected cells indicating the blockade of calcineurin mediated dephosphorylation of NFAT upon receptor heterodimerization. Conclusion These data for the first time unveil a novel insight for the role of hSSTR5/β2AR in the modulation of signaling pathways which has not been addressed earlier.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
18
|
Kharmate G, Rajput PS, Watt HL, Somvanshi RK, Chaudhari N, Qiu X, Kumar U. Role of somatostatin receptor 1 and 5 on epidermal growth factor receptor mediated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1172-89. [DOI: 10.1016/j.bbamcr.2011.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/28/2011] [Accepted: 03/09/2011] [Indexed: 12/19/2022]
|
19
|
Shonberg J, Scammells PJ, Capuano B. Design strategies for bivalent ligands targeting GPCRs. ChemMedChem 2011; 6:963-74. [PMID: 21520422 DOI: 10.1002/cmdc.201100101] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 01/20/2023]
Abstract
Specifically designed bivalent ligands targeting G protein-coupled receptor (GPCR) dimeric structures have become increasingly popular in recent literature. The advantages of the bivalent approach are numerous, including enhanced potency and receptor subtype specificity. However, the use of bivalent ligands as potential pharmacotherapeutics is limited by problematic molecular properties, such as high molecular weight and lipophilicity. This minireview focuses on the design of bivalent ligands recently described in the literature; discussing the choice of lead pharmacophore, the position and nature of the attachment point for linking the two pharmacophore units, and the length and composition of the spacer group. Furthermore, this minireview distils the molecular descriptors of the bivalent ligands that exhibit in vivo activity, as well as highlights their ability to access the central nervous system.
Collapse
Affiliation(s)
- Jeremy Shonberg
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, 381 Royal Pde, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
20
|
Yim CB, van der Wildt B, Dijkgraaf I, Joosten L, Eek A, Versluis C, Rijkers DTS, Boerman OC, Liskamp RMJ. Spacer effects on in vivo properties of DOTA-conjugated dimeric [Tyr3]octreotate peptides synthesized by a "Cu(I)-click" and "sulfo-click" ligation method. Chembiochem 2011; 12:750-60. [PMID: 21328514 DOI: 10.1002/cbic.201000639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/11/2022]
Abstract
We report on the SSTR2-binding properties of a series of four dimeric [Tyr3]octreotate analogues with different spacer lengths (nine, 19, 41, and 57 atoms) between the peptides. Two analogues (9 and 57 atoms) were selected as precursors for the design, synthesis, and biological evaluation of DOTA-conjugated dimeric [Tyr3]octreotate analogues for tumor targeting. These compounds were synthesized by using a two-stage click ligation procedure: a Cu(I) -catalyzed 1,3-dipolar cycloaddition ("copper-click" reaction) and a thio acid/sulfonyl azide amidation ("sulfo-click" reaction). The IC(50) values of these DOTA-conjugated [Tyr3]octreotate analogues were comparable, and internalization studies showed that the nine-atom (111) In-DOTA-labeled [Tyr3]octreotate dimer had rapid and high receptor binding. Biodistribution studies with BALB/c nude mice bearing subcutaneous AR42J tumors showed that the (111) In-labeled [Tyr3]octreotate dimer (nine atoms) had a high tumor uptake at 1 h p.i. (38.8 ± 8.3 % ID g(-1) ), and excellent tumor retention at 4 h p.i. (40.9 ± 2.5 % ID g(-1) ). However, the introduction of the extended hydrophilic 57 atoms spacer led to rapid clearance from the circulation; this limited tumor accumulation of the radiotracer (21.4 ± 4.9 % ID g(-1) at 1 h p.i.). These findings provide important insight on dimerization and spacer effects on the in vivo properties of DOTA-conjugated [Tyr3]octreotate dimers.
Collapse
Affiliation(s)
- Cheng-Bin Yim
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|