1
|
González-Arnay E, Pérez-Santos I, Jiménez-Sánchez L, Cid E, Gal B, de la Prida LM, Cavada C. Immunohistochemical field parcellation of the human hippocampus along its antero-posterior axis. Brain Struct Funct 2024; 229:359-385. [PMID: 38180568 PMCID: PMC10917878 DOI: 10.1007/s00429-023-02725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/15/2023] [Indexed: 01/06/2024]
Abstract
The primate hippocampus includes the dentate gyrus, cornu ammonis (CA), and subiculum. CA is subdivided into four fields (CA1-CA3, plus CA3h/hilus of the dentate gyrus) with specific pyramidal cell morphology and connections. Work in non-human mammals has shown that hippocampal connectivity is precisely patterned both in the laminar and longitudinal axes. One of the main handicaps in the study of neuropathological semiology in the human hippocampus is the lack of clear laminar and longitudinal borders. The aim of this study was to explore a histochemical segmentation of the adult human hippocampus, integrating field (medio-lateral), laminar, and anteroposterior longitudinal patterning. We provide criteria for head-body-tail field and subfield parcellation of the human hippocampus based on immunodetection of Rabphilin3a (Rph3a), Purkinje-cell protein 4 (PCP4), Chromogranin A and Regulation of G protein signaling-14 (RGS-14). Notably, Rph3a and PCP4 allow to identify the border between CA3 and CA2, while Chromogranin A and RGS-14 give specific staining of CA2. We also provide novel histological data about the composition of human-specific regions of the anterior and posterior hippocampus. The data are given with stereotaxic coordinates along the longitudinal axis. This study provides novel insights for a detailed region-specific parcellation of the human hippocampus useful for human brain imaging and neuropathology.
Collapse
Affiliation(s)
- Emilio González-Arnay
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Basic Medical Science-Division of Human Anatomy, Universidad de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lorena Jiménez-Sánchez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad CEU-San Pablo, Madrid, Spain
| | | | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Kogawa EM, Melo FF, Pires RG, Caetano PCC, de Lima Rodrigues J, Benito LAO, da Silva ICR, de Castro Cantuária AP, de Carvalho Sales-Peres SH. The changes on salivary flow rates, buffering capacity and chromogranin A levels in adults after bariatric surgery. Clin Oral Investig 2024; 28:159. [PMID: 38378939 DOI: 10.1007/s00784-024-05551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES This study aimed to investigate changes in salivary flow rates, buffering capacity, and salivary chromogranin A (CHGA) levels in adults undergoing bariatric surgery (BS) compared with a non-obese control group. MATERIALS AND METHODS Salivary analyses were performed on 62 participants aged over 50 years, stratified into two groups matched for age and gender-individuals who had undergone bariatric surgery (BS) (n = 31) and a corresponding healthy control group (n = 31). Before saliva collection, participants completed a comprehensive 11-point visual numerical rating scale (NRS 0-10) xerostomia questionnaire, assessing subjective perceptions of two key aspects: dryness of the oral mucosa and resultant impact on oral functional ability. Three distinct saliva measurements were obtained: unstimulated whole saliva (UWS), stimulated whole saliva (SWS), and unstimulated upper labial saliva (ULS). The buffering capacity of unstimulated saliva was assessed using pH indicator strips, and concentrations of salivary Chromogranin A (CHGA) were quantified in stimulated saliva via enzyme-linked immunosorbent assay (ELISA). RESULTS After BS, more than 40% of BS group patients reported xerostomia, with 16.1% experiencing only mild symptoms without significant functional impact (p = 0.009). The prevalence of xerostomia and tongue dryness was higher in the BS group compared to the control group (p = 0.028 and p = 0.025, respectively). The comparative analysis unveiled no statistically significant differences in flow rates of unstimulated upper labial saliva (ULS), unstimulated whole saliva (UWS), and stimulated whole saliva (SWS) between the control group and patients who underwent bariatric surgery. However, in patients undergone BS with xerostomia, both ULS and UWS flow rates were significantly lower than in controls with xerostomia (p = 0.014 and p = 0.007, respectively). The buffering capacity was significantly lower in patients undergone BS than in controls (p = 0.009). No differences were found between groups regarding CHGA concentration and output values, nevertheless, higher values of CHGA concentrations were significantly correlated to lower flow rates. CONCLUSION According to the results, this study suggests that individuals undergoing BS may exhibit altered salivary buffering capacity and reduced unstimulated salivary flows in the presence of xerostomia. Additionally, the findings suggest that elevated concentration of salivary CHGA might be associated, in part, with salivary gland hypofunction. CLINICAL RELEVANCE The clinical significance of this study lies in highlighting the changes in salivary functions after BS. The identified salivary alterations might be attributed to adverse effects of BS such as vomiting, gastroesophageal reflux, and dehydration. Understanding these changes is crucial for healthcare professionals involved in the care of post-BS patients, as it sheds light on potential oral health challenges that may arise as a consequence of the surgical intervention. Monitoring and managing these salivary alterations can contribute to comprehensive patient care and enhance the overall postoperative experience for individuals undergoing BS.
Collapse
Affiliation(s)
- Evelyn Mikaela Kogawa
- Faculdade de Odontologia de Bauru, Universidade de São Paulo (USP), Bauru, SP, 17012-901, Brazil.
- Departamento de Odontologia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil.
- Programa de Pós-Graduação em Odontologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| | - Fabíola Ferreira Melo
- Programa de Pós-Graduação em Odontologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Reuel Gomes Pires
- Curso de Odontologia, Universidade Católica de Brasília, Brasília, DF, 71966-700, Brazil
| | | | | | - Linconl Agudo Oliveira Benito
- Pós-Graduação em Ciências e Tecnologias em Saúde (PPGCTS), FCE, Universidade de Brasília, Brasília, DF, 72220-275, Brazil
| | | | | | | |
Collapse
|
3
|
Lv X, Wang X, Liu J, Wang F, Sun M, Fan X, Ye Z, Liu P, Wen J. Potential biomarkers and immune cell infiltration involved in aortic valve calcification identified through integrated bioinformatics analysis. Front Physiol 2022; 13:944551. [PMID: 36589450 PMCID: PMC9797982 DOI: 10.3389/fphys.2022.944551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Calcific aortic valve disease (CAVD) is the most common valvular heart disease in the aging population, resulting in a significant health and economic burden worldwide, but its underlying diagnostic biomarkers and pathophysiological mechanisms are not fully understood. Methods: Three publicly available gene expression profiles (GSE12644, GSE51472, and GSE77287) from human Calcific aortic valve disease (CAVD) and normal aortic valve samples were downloaded from the Gene Expression Omnibus database for combined analysis. R software was used to identify differentially expressed genes (DEGs) and conduct functional investigations. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify key feature genes as potential biomarkers for Calcific aortic valve disease (CAVD). Receiver operating characteristic (ROC) curves were used to evaluate the discriminatory ability of key genes. The CIBERSORT deconvolution algorithm was used to determine differential immune cell infiltration and the relationship between key genes and immune cell types. Finally, the Expression level and diagnostic ability of the identified biomarkers were further validated in an external dataset (GSE83453), a single-cell sequencing dataset (SRP222100), and immunohistochemical staining of human clinical tissue samples, respectively. Results: In total, 34 identified DEGs included 21 upregulated and 13 downregulated genes. DEGs were mainly involved in immune-related pathways such as leukocyte migration, granulocyte chemotaxis, cytokine activity, and IL-17 signaling. The machine learning algorithm identified SCG2 and CCL19 as key feature genes [area under the ROC curve (AUC) = 0.940 and 0.913, respectively; validation AUC = 0.917 and 0.903, respectively]. CIBERSORT analysis indicated that the proportion of immune cells in Calcific aortic valve disease (CAVD) was different from that in normal aortic valve tissues, specifically M2 and M0 macrophages. Key genes SCG2 and CCL19 were significantly positively correlated with M0 macrophages. Single-cell sequencing analysis and immunohistochemical staining of human aortic valve tissue samples showed that SCG2 and CCL19 were increased in Calcific aortic valve disease (CAVD) valves. Conclusion: SCG2 and CCL19 are potential novel biomarkers of Calcific aortic valve disease (CAVD) and may play important roles in the biological process of Calcific aortic valve disease (CAVD). Our findings advance understanding of the underlying mechanisms of Calcific aortic valve disease (CAVD) pathogenesis and provide valuable information for future research into novel diagnostic and immunotherapeutic targets for Calcific aortic valve disease (CAVD).
Collapse
Affiliation(s)
- Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Graduate School of Peking Union Medical College, Beijing, China
| | - Xiaohui Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Jingwen Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Graduate School of Peking Union Medical College, Beijing, China
| | - Mingsheng Sun
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xueqiang Fan
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Jianyan Wen,
| |
Collapse
|
4
|
Perez-Rodriguez A, Eraso E, Quindós G, Mateo E. Antimicrobial Peptides with Anti-Candida Activity. Int J Mol Sci 2022; 23:ijms23169264. [PMID: 36012523 PMCID: PMC9409312 DOI: 10.3390/ijms23169264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Mycoses are accountable for millions of infections yearly worldwide. Invasive candidiasis is the most usual, presenting a high morbidity and mortality. Candida albicans remains the prevalent etiologic agent, but the incidence of other species such as Candida parapsilosis, Candida glabrata and Candida auris keeps increasing. These pathogens frequently show a reduced susceptibility to commonly used antifungal drugs, including polyenes, triazoles and echinocandins, and the incidence of emerging multi-drug-resistant strains of these species continues to increase. Therefore, the need to search for new molecules that target these pathogenic species in a different manner is now more urgent than ever. Nature is an almost endless source of interesting new molecules that could meet this need. Among these molecules, antimicrobial peptides, present in different sources in nature, possess some advantages over conventional antifungal agents, even with their own drawbacks, and are considered as a promising pharmacological option against a wide range of microbial infections. In this review, we describe 20 antimicrobial peptides from different origins that possess an activity against Candida.
Collapse
|
5
|
Ida-Eto M, Ohkawara T, Narita M. Localization of the neuropeptide manserin in rat dorsal root ganglia: Involvement in nociceptive function. Acta Histochem 2021; 123:151812. [PMID: 34775224 DOI: 10.1016/j.acthis.2021.151812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Manserin, a neuropeptide discovered in the rat brain, is distributed in the spiral ganglion of the inner ear and carotid body, suggesting it is also localized in another neuron cluster. In this study, we examined manserin's localization in the dorsal root ganglion (DRG) and spinal cord of adult Wistar rats using immunohistochemical analyses. The DRG consists of neurofilament (NF) 200-positive large cells and two types of small cells (calcitonin gene-related peptide (CGRP)-positive peptidergic neurons and isolectin B4 (IB4)-positive non-peptidergic neurons). Manserin was localized in some of the small cells. Fluorescence double immunostaining showed that manserin-positive cells corresponded to some of the CGRP-positive cells. The DRG comprises pseudo-unipolar cells that receive sensory information from the skin and viscera and project to each layer of the dorsal horn of the spinal cord. Manserin was localized in the CGRP-positive layer I and II outer, but not in the IB4-positive layer II inner. These results suggest manserin is localized in CGRP-positive cells in the DRG, projects to the dorsal horn of the spinal cord, and is secreted with other neuropeptides, such as CGRP, to participate in nociceptive function.
Collapse
|
6
|
The Emerging Roles of Chromogranins and Derived Polypeptides in Atherosclerosis, Diabetes, and Coronary Heart Disease. Int J Mol Sci 2021; 22:ijms22116118. [PMID: 34204153 PMCID: PMC8201018 DOI: 10.3390/ijms22116118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Chromogranin A (CgA), B (CgB), and C (CgC), the family members of the granin glycoproteins, are associated with diabetes. These proteins are abundantly expressed in neurons, endocrine, and neuroendocrine cells. They are also present in other areas of the body. Patients with diabetic retinopathy have higher levels of CgA, CgB, and CgC in the vitreous humor. In addition, type 1 diabetic patients have high CgA and low CgB levels in the circulating blood. Plasma CgA levels are increased in patients with hypertension, coronary heart disease, and heart failure. CgA is the precursor to several functional peptides, including catestatin, vasostatin-1, vasostatin-2, pancreastatin, chromofungin, and many others. Catestatin, vasostain-1, and vasostatin-2 suppress the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular endothelial cells. Catestatin and vasostatin-1 suppress oxidized low-density lipoprotein-induced foam cell formation in human macrophages. Catestatin and vasostatin-2, but not vasostatin-1, suppress the proliferation and these three peptides suppress the migration in human vascular smooth muscles. Chronic infusion of catestatin, vasostatin-1, or vasostatin-2 suppresses the development of atherosclerosis of the aorta in apolipoprotein E-deficient mice. Catestatin, vasostatin-1, vasostatin-2, and chromofungin protect ischemia/reperfusion-induced myocardial dysfunction in rats. Since pancreastatin inhibits insulin secretion from pancreatic β-cells, and regulates glucose metabolism in liver and adipose tissues, pancreastatin inhibitor peptide-8 (PSTi8) improves insulin resistance and glucose homeostasis. Catestatin stimulates therapeutic angiogenesis in the mouse hind limb ischemia model. Gene therapy with secretoneurin, a CgC-derived peptide, stimulates postischemic neovascularization in apolipoprotein E-deficient mice and streptozotocin-induced diabetic mice, and improves diabetic neuropathy in db/db mice. Therefore, CgA is a biomarker for atherosclerosis, diabetes, hypertension, and coronary heart disease. CgA- and CgC--derived polypeptides provide the therapeutic target for atherosclerosis and ischemia-induced tissue damages. PSTi8 is useful in the treatment of diabetes.
Collapse
|
7
|
Sun JY, Hua Y, Shen H, Qu Q, Kan JY, Kong XQ, Sun W, Shen YY. Identification of key genes in calcific aortic valve disease via weighted gene co-expression network analysis. BMC Med Genomics 2021; 14:135. [PMID: 34020624 PMCID: PMC8138987 DOI: 10.1186/s12920-021-00989-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most common subclass of valve heart disease in the elderly population and a primary cause of aortic valve stenosis. However, the underlying mechanisms remain unclear. METHODS The gene expression profiles of GSE83453, GSE51472, and GSE12644 were analyzed by 'limma' and 'weighted gene co-expression network analysis (WGCNA)' package in R to identify differentially expressed genes (DEGs) and key modules associated with CAVD, respectively. Then, enrichment analysis was performed based on Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, DisGeNET, and TRRUST database. Protein-protein interaction network was constructed using the overlapped genes of DEGs and key modules, and we identified the top 5 hub genes by mixed character calculation. RESULTS We identified the blue and yellow modules as the key modules. Enrichment analysis showed that leukocyte migration, extracellular matrix, and extracellular matrix structural constituent were significantly enriched. SPP1, TNC, SCG2, FAM20A, and CD52 were identified as hub genes, and their expression levels in calcified or normal aortic valve samples were illustrated, respectively. CONCLUSIONS This study suggested that SPP1, TNC, SCG2, FAM20A, and CD52 might be hub genes associated with CAVD. Further studies are required to elucidate the underlying mechanisms and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Yang Hua
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Hui Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Qiang Qu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Jun-Yan Kan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xiang-Qing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Yue-Yun Shen
- Department of Cardiology, Liyang People's Hospital, Liyang, 213300, China.
| |
Collapse
|
8
|
Mitchell K, Mikwar M, Da Fonte D, Lu C, Tao B, Peng D, Erandani WKCU, Hu W, Trudeau VL. Secretoneurin is a secretogranin-2 derived hormonal peptide in vertebrate neuroendocrine systems. Gen Comp Endocrinol 2020; 299:113588. [PMID: 32828813 DOI: 10.1016/j.ygcen.2020.113588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Secretogranin-2 (SCG2) is a large precursor protein that is processed into several potentially bioactive peptides, with the 30-43 amino acid central domain called secretoneurin (SN) being clearly evolutionary conserved in vertebrates. Secretoneurin exerts a diverse array of biological functions including regulating nervous, endocrine, and immune systems in part due to its wide tissue distribution. Expressed in some neuroendocrine neurons and pituitary cells, SN is a stimulator of the synthesis and release of luteinizing hormone from both goldfish pituitary cells and the mouse LβT2 cell line. Neuroendocrine, paracrine and autocrine signaling pathways for the stimulation of luteinizing hormone release indicate hormone-like activities to regulate reproduction. Mutation of the scg2a and scg2b genes using TALENs in zebrafish reduces sexual behavior, ovulation, oviposition, and fertility. A single injection of the SNa peptide enhanced reproductive outcomes in scg2a/scg2b double mutant zebrafish. Evidence in goldfish suggests a new role for SN to stimulate food intake by actions on other feeding-related neuropeptides. Expression and regulation of the Scg2a precursor mRNA in goldfish gut also supports a role in feeding. In rodent models, SN has trophic-like properties promoting both neuroprotection and neuronal plasticity and has chemoattractant properties that regulate neuroinflammation. Data obtained from several cellular models suggest that SN binds to and activates a G-protein coupled receptor (GPCR), but a bona fide SN receptor protein needs to be identified. Other signaling pathways for SN have been reported which provides alternatives to the GPCR hypothesis. These include AMP-activated protein kinase (AMPK), extracellular signal-regulated kinases (ERK), mitogen-activated protein kinase (MAPK)and calcium/calmodulin-dependent protein kinase II in cardiomyocytes, phosphatidylinositol 3-kinase (PI3K) and Akt/Protein Kinase B (AKT, and MAPK in endothelial cells and Janus kinase 2/signal transducer and activator of transcription protein (JAK2-STAT) signaling in neurons. Some studies in cardiac cells provide evidence for cellular internalization of SN by an unknown mechanism. Many of the biological functions of SN remain to be fully characterized, which could lead to new and exciting applications.
Collapse
Affiliation(s)
- Kimberly Mitchell
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Myy Mikwar
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Dillon Da Fonte
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - BinBin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Di Peng
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
9
|
Liu W, Wang F, Zhao M, Fan Y, Cai W, Luo M. The Neuropeptide Secretoneurin Exerts a Direct Effect on Arteriogenesis In Vivo and In Vitro. Anat Rec (Hoboken) 2018; 301:1917-1927. [PMID: 30288932 DOI: 10.1002/ar.23929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/13/2018] [Accepted: 04/08/2018] [Indexed: 01/24/2023]
Abstract
It is well known that nerves modulate the development and remodeling of blood vessels by releasing different neuropeptides and neurotransmitters. Secretoneurin (SN), a neuropeptide located in nerve fibers along blood vessels, acts as a pro-angiogenic agent and induces postnatal vasculogenesis. However, little is known about its involvement in arteriogenesis. In the present study, we tested the hypothesis that SN promotes arteriogenesis in a rat model of hind limb ischemia, as such, we evaluated the effect of this neuropeptide on proliferation and the production of adhesion and chemotaxis molecules in vascular smooth muscle cells (VSMCs), the main component that carries the burden of the transformation of a small arteriole into a large collateral vessel. In vivo, SN-immunoreactive nerve fibers were abundantly distributed in the adventitia of the collateral vessel. Moreover, administration of SN induced cell proliferation in the vascular wall and the infiltration of inflammatory cells/macrophages to promote collateral vessel growth. This was shown by an increased density of arterioles/arteries, together with a well-developed network of collateral vessels, and well-preserved skeletal muscles. In vitro, SN exerted proliferative effects on VSMCs and stimulated these cells to express adhesion molecules. In conclusion, our data demonstrate for the first time that SN acts as a mediator of inflammation, contributing to collateral vessel growth, in addition to directly stimulating cell proliferation in the vascular wall to promote collateral vessel growth in a rat model of hind limb ischemia. Anat Rec, 301:1917-1927, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Weiqing Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Min Zhao
- Department of Anatomy, Histology & Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Yan Fan
- Department of Anatomy, Histology & Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Weijun Cai
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingying Luo
- Department of Anatomy, Histology & Embryology, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Chromogranins: from discovery to current times. Pflugers Arch 2017; 470:143-154. [PMID: 28875377 DOI: 10.1007/s00424-017-2027-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.
Collapse
|
11
|
El-Salhy M, Solomon T, Hausken T, Gilja OH, Hatlebakk JG. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 2017; 23:5068-5085. [PMID: 28811704 PMCID: PMC5537176 DOI: 10.3748/wjg.v23.i28.5068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn’s disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients’ quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease.
Collapse
|
12
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
13
|
Massironi S, Zilli A, Cavalcoli F, Conte D, Peracchi M. Chromogranin A and other enteroendocrine markers in inflammatory bowel disease. Neuropeptides 2016; 58:127-34. [PMID: 26804239 DOI: 10.1016/j.npep.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/10/2016] [Accepted: 01/10/2016] [Indexed: 02/08/2023]
Abstract
Changes in the distribution and products of enteroendocrine cells may play a role in immune activation and regulation of gut inflammation. This review aims at critically evaluating the main enteroendocrine markers in inflammatory bowel diseases (IBD). A narrative review was performed by searching inflammatory bowel diseases and enteroendocrine biomarkers in PubMed. Relevant modifications of some enteroendocrine markers, such as Chromogranin A, and their correlation with disease activity have been reported in patients with inflammatory bowel diseases. Even if data about neuroendocrine markers are sometimes contrasting, they may be potentially useful for the diagnosis and clinical management of these patients.
Collapse
Affiliation(s)
- Sara Massironi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Alessandra Zilli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Federica Cavalcoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Dario Conte
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Maddalena Peracchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
14
|
Mazzawi T, El-Salhy M. Changes in small intestinal chromogranin A-immunoreactive cell densities in patients with irritable bowel syndrome after receiving dietary guidance. Int J Mol Med 2016; 37:1247-53. [PMID: 26987104 PMCID: PMC4829142 DOI: 10.3892/ijmm.2016.2523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
Chromogranin A (CgA) is a common marker for enteroendocrine cells in the gut, and CgA-immunoreactive cell densities are abnormal in patients with irritable bowel syndrome (IBS). The majority of patients with IBS report that their symptoms develop after consuming certain foodstuffs. In the present study, we investigated the effects of dietary guidance on the total enteroendocrine cell densities in the small intestine, as detected by CgA. A total of 14 patients with IBS underwent a gastroscopy with duodenal biopsies and 11 of them also underwent a colonoscopy, with biopsy samples obtained from the ileum. Fourteen control subjects were also included. Each patient received 3 sessions of dietary guidance. Gastroscopies and colonoscopies were performed on both the controls and patients with IBS (at baseline and at 3–9 months after receiving guidance). Biopsy samples obtained from the duodenum and ileum were immunostained for CgA using the avidin-biotin complex (ABC) method and were quantified using computerized image analysis. The density of CgA-immunoreactive cells in the duodenum (mean ± SEM values) in the control subjects was 235.9±31.9 cells/mm2; in the patients with IBS, the density was 36.9±9.8 and 103.7±16.9 cells/mm2 before and after they received dietary guidance, respectively (P=0.007). The density of CgA-immunoreactive cells in the ileum in the control subjects was 47.4±8.3 cells/mm2; in the patients with IBS, the density was 48.4±8.1 and 17.9±4.4 cells/mm2, before and after they received dietary guidance, respectively (P=0.0006). These data indicate that changes in CgA-immunoreactive cell densities in patients with IBS after receiving dietary guidance may reflect a change in the densities of the small intestinal enteroendocrine cells, which may contribute to an improvement in the IBS symptoms.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital-Helse Fonna, Stord, Norway
| |
Collapse
|
15
|
Wasinger VC, Yau Y, Duo X, Zeng M, Campbell B, Shin S, Luber R, Redmond D, Leong RWL. Low Mass Blood Peptides Discriminative of Inflammatory Bowel Disease (IBD) Severity: A Quantitative Proteomic Perspective. Mol Cell Proteomics 2015; 15:256-65. [PMID: 26530476 DOI: 10.1074/mcp.m115.055095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Breakdown of the protective gut barrier releases effector molecules and degradation products into the blood stream making serum and plasma ideal as a diagnostic medium. The enriched low mass proteome is unexplored as a source of differentiators for diagnosing and monitoring inflammatory bowel disease (IBD) activity, that is less invasive than colonoscopy. Differences in the enriched low mass plasma proteome (<25 kDa) were assessed by label-free quantitative mass-spectrometry. A panel of marker candidates were progressed to validation phase and "Tier-2" FDA-level validated quantitative assay. Proteins important in maintaining gut barrier function and homeostasis at the epithelial interface have been quantitated by multiple reaction monitoring in plasma and serum including both inflammatory; rheumatoid arthritis controls, and non-inflammatory healthy controls; ulcerative colitis (UC), and Crohn's disease (CD) patients. Detection by immunoblot confirmed presence at the protein level in plasma. Correlation analysis and receiver operator characteristics were used to report the sensitivity and specificity. Peptides differentiating controls from IBD originate from secreted phosphoprotein 24 (SPP24, p = 0.000086, 0.009); whereas those in remission and healthy can be differentiated in UC by SPP24 (p = 0.00023, 0.001), α-1-microglobulin (AMBP, p = 0.006) and CD by SPP24 (p = 0.019, 0.05). UC and CD can be differentiated by Guanylin (GUC2A, p = 0.001), and Secretogranin-1 (CHGB p = 0.035). Active and quiescent disease can also be differentiated in UC and CD by CHGB (p ≤ 0.023) SPP24 (p ≤ 0.023) and AMBP (UC p = 0.046). Five peptides discriminating IBD activity and severity had very little-to-no correlation to erythrocyte sedimentation rate, C-reactive protein, white cell or platelet counts. Three of these peptides were found to be binding partners to SPP24 protein alongside other known matrix proteins. These proteins have the potential to improve diagnosis and evaluate IBD activity, reducing the need for more invasive techniques. Data are available via ProteomeXchange with identifier PXD002821.
Collapse
Affiliation(s)
- Valerie C Wasinger
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia;
| | - Yunki Yau
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; ¶Gastroenterology Department, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW, Australia
| | - Xizi Duo
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ming Zeng
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Beth Campbell
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Sean Shin
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raphael Luber
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane Redmond
- ‖Department of Gastroenterology, Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, Australia
| | - Rupert W L Leong
- §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia; ¶Gastroenterology Department, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW, Australia; ‖Department of Gastroenterology, Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, Australia
| |
Collapse
|
16
|
Yuan G, Chen H, Xia C, Gao L, Yu C. Ultrasensitive electrochemical detection of secretoneurin based on Pb2+-decorated reduced graphene oxide–tetraethylene pentamine as a label. Biosens Bioelectron 2015; 69:95-9. [DOI: 10.1016/j.bios.2015.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/16/2014] [Accepted: 02/12/2015] [Indexed: 02/09/2023]
|
17
|
Obligatory role for endothelial heparan sulphate proteoglycans and caveolae internalization in catestatin-dependent eNOS activation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:783623. [PMID: 25136621 PMCID: PMC4127283 DOI: 10.1155/2014/783623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/24/2022]
Abstract
The chromogranin-A peptide catestatin modulates a wide range of processes, such as cardiovascular functions, innate immunity, inflammation, and metabolism. We recently found that the cardiac antiadrenergic action of catestatin requires a PI3K-dependent NO release from endothelial cells, although the receptor involved is yet to be identified. In the present work, based on the cationic properties of catestatin, we tested the hypothesis of its interaction with membrane heparan sulphate proteoglycans, resulting in the activation of a caveolae-dependent endocytosis. Experiments were performed on bovine aortic endothelial cells. Endocytotic vesicles trafficking was quantified by confocal microscopy using a water-soluble membrane dye; catestatin colocalization with heparan sulphate proteoglycans and caveolin 1 internalization were studied by fluorimetric measurements in live cells. Modulation of the catestatin-dependent eNOS activation was assessed by immunofluorescence and immunoblot analysis. Our results demonstrate that catestatin (5 nM) colocalizes with heparan sulphate proteoglycans and induces a remarkable increase in the caveolae-dependent endocytosis and caveolin 1 internalization, which were significantly reduced by both heparinase and wortmannin. Moreover, catestatin was unable to induce Ser1179 eNOS phosphorylation after pretreatments with heparinase and methyl-β-cyclodextrin. Taken together, these results highlight the obligatory role for proteoglycans and caveolae internalization in the catestatin-dependent eNOS activation in endothelial cells.
Collapse
|
18
|
Faulkner S, Elia G, O' Boyle P, Dunn M, Morris D. Composition of the bovine uterine proteome is associated with stage of cycle and concentration of systemic progesterone. Proteomics 2014; 13:3333-53. [PMID: 24115321 DOI: 10.1002/pmic.201300204] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/24/2013] [Accepted: 09/11/2013] [Indexed: 11/08/2022]
Abstract
Early embryonic loss accounts for over 70% of total embryonic and foetal loss in dairy cattle. Early embryonic development and survival is associated with the concentration of systemic progesterone. To determine if the uterine proteome is influenced by stage of cycle or systemic progesterone concentrations, uterine flushings were collected from the ipsi- and contralateral uterine horns of beef heifers on Days 7 (n = 10) and 15 (n = 10) of the oestrous cycle. Animals were separated into low or high progesterone groups based on plasma progesterone concentrations on Day 5 of the cycle. Samples were albumin depleted before iTRAQ R labeling and subsequent strong cation exchange-LC-MS/MS analyses. A total of 20 proteins were up to 5.9-fold higher (p<0.05) and 20 were up to 2.3-fold lower on Day 15 compared toDay 7. In addition, the expression of a number of proteins on Day 7 and/or 15 of the cycle was correlated with progesterone concentrations during Days 3–7 or the rate of change in progesterone between Days 3 and 7. This study highlights the dynamic changes occurring in the microenvironment surrounding the embryo during this period. The findings here also support the hypothesis that progesterone supports embryonic development by altering the maternal uterine environment.
Collapse
|
19
|
Peitsch WK, Doerflinger Y, Fischer-Colbrie R, Huck V, Bauer AT, Utikal J, Goerdt S, Schneider SW. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS One 2014; 9:e89491. [PMID: 24558503 PMCID: PMC3928442 DOI: 10.1371/journal.pone.0089491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/23/2014] [Indexed: 12/21/2022] Open
Abstract
During development and progression of malignant melanoma, an important role has been attributed to alterations of cell-cell adhesions, in particular, to a “cadherin switch” from E- to N-cadherin. We have previously shown that a subtype of melanoma cells express the desmosomal cadherin desmoglein 2 as non-junction-bound cell surface protein in addition to classical cadherins. To study the role of desmoglein 2 in melanoma cells, melanoma lines containing high endogenous amounts of desmoglein 2 were depleted of the protein by RNA interference. Transwell migration and scratch wounding assays showed markedly increased migration upon desmoglein 2 suppression whereas proliferation and viability remained unaltered. In gene expression profiles, desmoglein 2 depletion was associated with overexpression of migration-related genes. Strongest overexpression was found for secretogranin II which has not been reported in melanoma cells before. The bioactive peptide derived from secretogranin II, secretoneurin, is known to exert chemoattractive functions and was demonstrated here to stimulate melanoma cell migration. In summary, we show that desmoglein 2 expression attenuates migration of melanoma cells. The mechanism of desmoglein 2 impaired cell migration is mediated by downregulation of secretogranin II. Loss of desmoglein 2 increases expression of secretogranin II, followed by an enhanced migratory activity of melanoma cells. Our data add a new pathway of regulating melanoma cell migration related to a desmoglein 2 – secretogranin II axis.
Collapse
Affiliation(s)
- Wiebke K. Peitsch
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| | - Yvette Doerflinger
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Volker Huck
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander T. Bauer
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergij Goerdt
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan W. Schneider
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Strid H, Simrén M, Lasson A, Isaksson S, Stridsberg M, Öhman L. Fecal chromogranins and secretogranins are increased in patients with ulcerative colitis but are not associated with disease activity. J Crohns Colitis 2013; 7:e615-22. [PMID: 23694857 DOI: 10.1016/j.crohns.2013.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Little is known of the importance of chromogranins (Cg) and secretogranins (Sg) in ulcerative colitis (UC). We therefore investigated fecal levels of CgA, CgB, SgII and SgIII, and their association with inflammatory activity, disease duration and medical therapy in UC. METHODS Analyses of CgA, CgB, SgII, SgIII and calprotectin in stool samples from 41 UC patients and 29 healthy controls were performed. Two stool samples, during relapse and remission, respectively, were obtained from each UC patient. RESULTS The levels of fecal CgA and SgII were higher in UC patients with active disease as compared to healthy controls. CgB and SgII were positively correlated with disease duration, but none of the granins were positively correlated with calprotectin, Mayo score, CRP or serum concentrations of TNF in UC patients with active disease. Also UC patients in remission had higher levels of CgA, CgB, SgII, and SgIII as compared to healthy controls. However, levels of fecal CgA, CgB, SgII and SgIII were lower during active disease relative to remission. Moreover, fecal levels of CgA and SgII were higher in UC patients in remission treated with thiopurines than in thiopurine-naïve patients in remission. CONCLUSION Fecal chromogranins and secretogranins are increased in UC but are not associated with disease activity, but seem to increase with duration of the disease. Thus, fecal granins might reflect structural changes associated with chronicity of disease, or medical therapy.
Collapse
Affiliation(s)
- Hans Strid
- Dept. of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Aslam R, Marban C, Corazzol C, Jehl F, Delalande F, Van Dorsselaer A, Prévost G, Haïkel Y, Taddei C, Schneider F, Metz-Boutigue MH. Cateslytin, a chromogranin A derived peptide is active against Staphylococcus aureus and resistant to degradation by its proteases. PLoS One 2013; 8:e68993. [PMID: 23894389 PMCID: PMC3722296 DOI: 10.1371/journal.pone.0068993] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 12/24/2022] Open
Abstract
Innate immunity involving antimicrobial peptides represents an integrated and highly effective system of molecular and cellular mechanisms that protects host against infections. One of the most frequent hospital-acquired pathogens, Staphylococcus aureus, capable of producing proteolytic enzymes, which can degrade the host defence agents and tissue components. Numerous antimicrobial peptides derived from chromogranins, are secreted by nervous, endocrine and immune cells during stress conditions. These kill microorganisms by their lytic effect at micromolar range, using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. In this study, we tested antimicrobial activity of chromogranin A-derived peptides (catestatin and cateslytin) against S. aureus and analysed S. aureus-mediated proteolysis of these peptides using HPLC, sequencing and MALDI-TOF mass spectrometry. Interestingly, this study is the first to demonstrate that cateslytin, the active domain of catestatin, is active against S. aureus and is interestingly resistant to degradation by S. aureus proteases.
Collapse
Affiliation(s)
- Rizwan Aslam
- Inserm UMR-1121, Université de Strasbourg, Strasbourg, France
| | - Céline Marban
- Inserm UMR-1121, Université de Strasbourg, Strasbourg, France
| | - Christian Corazzol
- EA-7290, Virulence bactérienne précoce, Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg – CHRU Strasbourg, Strasbourg, France
| | - François Jehl
- EA-7290, Virulence bactérienne précoce, Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg – CHRU Strasbourg, Strasbourg, France
| | - François Delalande
- CNRS UMR-7178, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Alain Van Dorsselaer
- CNRS UMR-7178, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Gilles Prévost
- EA-7290, Virulence bactérienne précoce, Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg – CHRU Strasbourg, Strasbourg, France
| | - Youssef Haïkel
- Inserm UMR-1121, Université de Strasbourg, Strasbourg, France
- Faculté de chirurgie dentaire, Université de Strasbourg, Strasbourg, France
| | - Corinne Taddei
- Faculté de chirurgie dentaire, Université de Strasbourg, Strasbourg, France
| | - Francis Schneider
- Service de Réanimation Médicale, Hôpital de Hautepierre, Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
22
|
[Chromogranin A and neuroendocrine tumors]. ACTA ACUST UNITED AC 2012; 60:386-95. [PMID: 23271036 DOI: 10.1016/j.endonu.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/20/2012] [Accepted: 10/23/2012] [Indexed: 11/21/2022]
Abstract
Chromogranin A (CgA) is the most abundant granin in gastroenteropancreatic neuroendocrine tumors (GEP-NETs). As a tumor marker is moderately sensitive and nonspecific. Despite the limitations of testing methods, which require careful interpretation, especially in the case of gastrinomas, patients treated with somatostatin analogues, and poorly differentiated tumors, it is the best tumor marker in GEP-NETs and may be of value in other tumors with neuroendocrine differentiation. CgA may be used as a marker in blood or tissue samples through immunohistochemical techniques. CgA levels correlate with tumor burden and extension and may be used for diagnosis and monitoring of GEP-NETs, especially midgut carcinoids and endocrine pancreatic tumors. It is also useful as a prognostic marker for detection of recurrence and monitoring of response to different treatments.
Collapse
|
23
|
Altered levels of fecal chromogranins and secretogranins in IBS: relevance for pathophysiology and symptoms? Am J Gastroenterol 2012; 107:440-7. [PMID: 22233694 DOI: 10.1038/ajg.2011.458] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Chromogranins (Cg) and secretogranins (Sg) are proteins ubiquitous in secretory cells of the enteric, endocrine, and immune systems, and may reflect activity of these systems. We therefore performed a hypothesis generating study to evaluate the association between fecal levels of CgA, CgB, SgII, and SgIII, with the clinical and pathophysiological phenotype of irritable bowel syndrome (IBS) patients. METHODS Analyses of CgA, CgB, SgII, SgIII, and calprotectin in fecal samples of 82 IBS patients and 29 healthy controls were performed. All IBS subjects completed validated questionnaires to assess gastrointestinal and psychological symptom severity, and underwent rectal barostat test and colonic transit time measurement. RESULTS IBS patients demonstrated higher levels of fecal CgA (P=0.009), SgII (P<0.001), and SgIII (P<0.001), but lower levels of CgB (P<0.001) compared with controls. SgII had good discriminative validity to positively identify IBS patients, with an area under the receiver operating characteristics (ROC) curve (AUROC) of 0.86 (95% confidence interval (CI): 0.78-0.94). SgIII and CgB both had fairly good discriminative validity to positively identify IBS patients, with an AUROC of 0.79 (95% CI: 0.71-0.87) and 0.78 (95% CI: 0.69-0.87), respectively. There were negative correlations between the colonic transit time and fecal levels of CgA (r=-0.53, P<0.001), SgII (r=-0.55, P<0.001), and SgIII (r=-0.28, P=0.03). Perceived abdominal pain was moderately associated with levels of CgA (r=0.32, P=0.004), SgII (r=0.31, P=0.006), and SgIII (r=0.24, P=0.04). Calprotectin levels were not associated with the levels of granins or with the clinical or pathophysiological phenotype of IBS patients. CONCLUSIONS Fecal levels of Cg and Sg may be related to the underlying pathophysiology of IBS and of potential importance for symptoms of the patients. Granins also show promise to serve as future biomarkers of IBS. Further studies are needed to explore the potential role of granins in IBS patients.
Collapse
|
24
|
Oh JY, Choi H, Lee RH, Roddy GW, Ylöstalo JH, Wawrousek E, Prockop DJ. Identification of the HSPB4/TLR2/NF-κB axis in macrophage as a therapeutic target for sterile inflammation of the cornea. EMBO Mol Med 2012; 4:435-48. [PMID: 22359280 PMCID: PMC3403300 DOI: 10.1002/emmm.201200221] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Sterile inflammation underlies many diseases of the cornea including serious chemical burns and the common dry eye syndrome. In search for therapeutic targets for corneal inflammation, we defined the kinetics of neutrophil infiltration in a model of sterile injury to the cornea and identified molecular and cellular mechanisms triggering inflammatory responses. Neutrophil infiltration occurred in two phases: a small initial phase (Phase I) that began within 15 min after injury, and a larger second phase (Phase II) that peaked at 24–48 h. Temporal analysis suggested that the neuropeptide secretoneurin initiated Phase I without involvement of resident macrophages. Phase II was initiated by the small heat shock protein HSPB4 that was released from injured keratocytes and that activated resident macrophages via the TLR2/NF-κB pathway. The Phase II inflammation was responsible for vision-threatening opacity and was markedly suppressed by different means of inhibition of the HSPB4/TLR2/NF-κB axis: in mice lacking HSPB4 or TLR2, by antibodies to HSPB4 or by TNF-α stimulated gene/protein 6 that CD44-dependently inhibits the TLR2/NF-κB pathway. Therefore, our data identified the HSPB4/TLR2/NF-κB axis in macrophages as an effective target for therapy of corneal inflammation.
Collapse
Affiliation(s)
- Joo Youn Oh
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, TX, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SRJ. The extended granin family: structure, function, and biomedical implications. Endocr Rev 2011; 32:755-97. [PMID: 21862681 PMCID: PMC3591675 DOI: 10.1210/er.2010-0027] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
26
|
Willis M, Leitner I, Jellinger KA, Marksteiner J. Chromogranin peptides in brain diseases. J Neural Transm (Vienna) 2011; 118:727-35. [PMID: 21533607 DOI: 10.1007/s00702-011-0648-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/12/2011] [Indexed: 12/14/2022]
Abstract
Synaptic disturbances may play a key role in the pathophysiology of neuropsychiatric diseases. In this article, we review immunohistological findings of chromogranin peptides in neurodegenerative and neurodevelopmental disorders, with particular emphasis on Alzheimer's disease, the disorder chromogranins have been studied most extensively. Data was collected from existing and new experimental data and medline research. This review focuses on synaptic changes elicited by chromogranin peptides immunoreactivity in Alzheimer's disease, as well in schizophrenia and amyotrophic lateral sclerosis (ALS). An imbalanced availability of chromogranin peptides may be responsible for impaired neurotransmission and a reduced functioning of dense core vesicles. Since chromogranin A was postulated as a potent proinflammatory agent, we focused on chromogranin A in neuroinflammation in Alzheimer's disease and ALS. Further understanding of role and function of chromogranin peptides in neuropathological conditions is still required.
Collapse
Affiliation(s)
- Michael Willis
- Department of General Psychiatry, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
27
|
Koshimizu H, Cawley NX, Kim T, Yergey AL, Loh YP. Serpinin: a novel chromogranin A-derived, secreted peptide up-regulates protease nexin-1 expression and granule biogenesis in endocrine cells. Mol Endocrinol 2011; 25:732-44. [PMID: 21436258 DOI: 10.1210/me.2010-0124] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously we demonstrated that chromogranin A (CgA) promoted secretory granule biogenesis in endocrine cells by stabilizing and preventing granule protein degradation in the Golgi, through up-regulation of expression of the protease inhibitor, protease nexin-1 (PN-1). However, the mechanism by which CgA signals the increase of PN-1 expression is unknown. Here we identified a 2.9-kDa CgA-C-terminus peptide, which we named serpinin, in conditioned media from AtT-20 cells, a corticotroph cell line, which up-regulated PN-1 mRNA expression. Serpinin was secreted from AtT-20 cells upon high potassium stimulation and increased PN-1 mRNA transcription in these cells, in an actinomycin D-inhibitable manner. CgA itself and other CgA-derived peptides, when added to AtT-20 cell media, had no effect on PN-1 expression. Treatment of AtT-20 cells with 10 nm serpinin elevated cAMP levels and PN-1 mRNA expression, and this effect was inhibited by a protein kinase A inhibitor, 6-22 amide. Serpinin and a cAMP analog, 8-bromo-cAMP, promoted the translocation of the transcription factor Sp1 into the nucleus, which is known to drive PN-1 expression. Additionally, an Sp1 inhibitor, mithramycin A inhibited the serpinin-induced PN-1 mRNA up-regulation. Furthermore, a luciferase reporter assay demonstrated serpinin-induced up-regulation of PN-1 promoter activity in an Sp1-dependent manner. When added to CgB-transfected 6T3 cells, a mutant AtT20 cell line, serpinin induced granule biogenesis as evidenced by the presence of CgB puncta accumulation in the processes and tips. Our findings taken together show that serpinin, a novel CgA-derived peptide, is secreted upon stimulation of corticotrophs and plays an important autocrine role in up-regulating PN-1-dependent granule biogenesis via a cAMP-protein kinase A-Sp1 pathway to replenish released granules.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
28
|
The chromogranin A- derived N-terminal peptide vasostatin-I: In vivo effects on cardiovascular variables in the rabbit. ACTA ACUST UNITED AC 2011; 168:10-20. [PMID: 21362443 DOI: 10.1016/j.regpep.2011.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/08/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
This study is the first to report on vascular effect of the chromogranin A derived Vasostatin-I (CgA(1-76)) in vivo. Cardiovascular parameters were recorded in 29 rabbits with sympathetically decentralized right carotid vascular bed. The recombinant human STA CgA(1-78) (VS-1) was infused at 480 μg/kg over 25 min. Group I was kept awake while groups II-V were anesthetized with Ketamine-xylazine. VS-1 was given alone in groups I-II while in presence of either phentolamine, phentolamine plus propranolol or hexamethonium in groups III-V. Serum VS-1 peaked at 2 μg/ml (200 nM) before onset of vascular effects and declined rapidly to ~200 ng/ml within 30 min. In all groups but III and IV VS-1 induced a brief vasoconstriction, being larger in intact than in sympathetically decentralized beds. The VS-1 induced vasoconstriction was not altered by hexamethonium but was abolished by phentolamine. In presence of the α-adrenergic blocker a long lasting vasodilatation, unaffected by propranolol, was apparent on both innervated and decentralized sides. In conclusion, VS-1 induced an α-adrenoceptor-mediated vasoconstriction presumably brought about by noradrenaline release from sympathetic nerves when infused at a dose giving an initial serum concentration of ~200 nM. This initial vasoconstriction masked a persistent adrenoceptor-independent vasodilatation, consistent with previous reports from in vitro models.
Collapse
|
29
|
Helle KB. Regulatory peptides from chromogranin A and secretogranin II. Cell Mol Neurobiol 2010; 30:1145-6. [PMID: 21088887 PMCID: PMC3008932 DOI: 10.1007/s10571-010-9552-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/23/2010] [Indexed: 11/28/2022]
Abstract
This commentary is focusing on novel aspects on the secreted CgA- and SgII-derived peptides, vasostatin-I (bovine and human CgA1–76, VS-I), WE-14 (CgA316–329), catestatin (bovine CgA344–366, human CgA352–372, Cts) and the SgII-derived secretoneurin (SgII180–204) as significant regulators of inflammatory reactions.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
30
|
Machado JD, Díaz-Vera J, Domínguez N, Alvarez CM, Pardo MR, Borges R. Chromogranins A and B as regulators of vesicle cargo and exocytosis. Cell Mol Neurobiol 2010; 30:1181-7. [PMID: 21046455 DOI: 10.1007/s10571-010-9584-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
Chromogranins (Cgs) are acidic proteins that have been implicated in several physiological processes such as vesicle sorting, the production of bioactive peptides and the accumulation of soluble species inside large dense core vesicles (LDCV). They constitute the main protein component in the vesicular matrix of LDCV. This latter characteristic of Cgs accounts for the ability of vesicles to concentrate catecholamines and Ca(2+). It is likely that Cgs are behind the delay in the neurotransmitter exit towards the extracellular milieu after vesicle fusion, due to their low affinity and high capacity to bind solutes present inside LDCV. The recent availability of mouse strains lacking Cgs, combined with the arrival of several techniques for the direct monitoring of exocytosis, have helped to expand our knowledge about the mechanisms used by granins to concentrate catecholamines and Ca(2+) in LDCV, and how they affect the kinetics of exocytosis. We will discuss the roles of Cgs A and B in maintaining the intravesicular environment of secretory vesicles and in exocytosis, bringing together the most recent findings from adrenal chromaffin cells.
Collapse
Affiliation(s)
- José D Machado
- Unit of Pharmacology, Medical School, La Laguna University, 38071 La Laguna, Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
31
|
Aller MA, Arias JI, Arias J. Pathological axes of wound repair: gastrulation revisited. Theor Biol Med Model 2010; 7:37. [PMID: 20840764 PMCID: PMC2945962 DOI: 10.1186/1742-4682-7-37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/14/2010] [Indexed: 02/06/2023] Open
Abstract
Post-traumatic inflammation is formed by molecular and cellular complex mechanisms whose final goal seems to be injured tissue regeneration. In the skin -an exterior organ of the body- mechanical or thermal injury induces the expression of different inflammatory phenotypes that resemble similar phenotypes expressed during embryo development. Particularly, molecular and cellular mechanisms involved in gastrulation return. This is a developmental phase that delineates the three embryonic germ layers: ectoderm, endoderm and mesoderm. Consequently, in the post-natal wounded skin, primitive functions related with the embryonic mesoderm, i.e. amniotic and yolk sac-derived, are expressed. Neurogenesis and hematogenesis stand out among the primitive function mechanisms involved. Interestingly, in these phases of the inflammatory response, whose molecular and cellular mechanisms are considered as traces of the early phases of the embryonic development, the mast cell, a cell that is supposedly inflammatory, plays a key role. The correlation that can be established between the embryonic and the inflammatory events suggests that the results obtained from the research regarding both great fields of knowledge must be interchangeable to obtain the maximum advantage.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
32
|
Tano K, Oyabu A, Tashiro Y, Kamada N, Narita N, Nasu F, Narita M. Manserin, a secretogranin II-derived peptide, distributes in the rat endocrine pancreas colocalized with islet-cell specific manner. Histochem Cell Biol 2010; 134:53-7. [DOI: 10.1007/s00418-010-0709-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
|
33
|
Modlin IM, Gustafsson BI, Moss SF, Pavel M, Tsolakis AV, Kidd M. Chromogranin A--biological function and clinical utility in neuro endocrine tumor disease. Ann Surg Oncol 2010; 17:2427-43. [PMID: 20217257 DOI: 10.1245/s10434-010-1006-3] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuroendocrine tumors (NETs) are a form of cancer that differ from other neoplasia in that they synthesize, store, and secrete peptides, e.g., chromogranin A (CgA) and amines. A critical issue is late diagnosis due to failure to identify symptoms or to establish the biochemical diagnosis. We review here the utility of CgA measurement in NETs and describe its biological role and the clinical value of its measurement. METHODS Literature review and analysis of the utility of plasma/serum CgA measurements in NETs and other diseases. RESULTS CgA is a member of the chromogranin family; its transcription and peptide processing are well characterized, but its precise function remains unknown. Levels are detectable in the circulation but vary substantially (approximately 25%) depending on which assay is used. Serum and plasma measurements are concordant. CgA is elevated in approximately 90% of gut NETs and correlates with tumor burden and recurrence. Highest values are noted in ileal NETs and gastrointestinal NETs associated with multiple endocrine neoplasia type 1. Both functioning and nonfunctioning pancreatic NETs have elevated values. CgA is more frequently elevated in well-differentiated tumors compared to poorly differentiated NETs. Effective treatment is often associated with decrease in CgA levels. Proton pump inhibitors falsely increase CgA, but levels normalize with therapy cessation. CONCLUSIONS CgA is currently the best available biomarker for the diagnosis of NETs. It is critical to establish diagnosis and has some utility in predicting disease recurrence, outcome, and efficacy of therapy. Measurement of plasma CgA is mandatory for the effective diagnosis and management of NET disease.
Collapse
Affiliation(s)
- Irvin M Modlin
- Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Koshimizu H, Kim T, Cawley NX, Loh YP. Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis. ACTA ACUST UNITED AC 2009; 160:153-9. [PMID: 20006653 DOI: 10.1016/j.regpep.2009.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 01/03/2023]
Abstract
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|