1
|
Fehér M, Márton Z, Szabó Á, Kocsa J, Kormos V, Hunyady Á, Kovács LÁ, Ujvári B, Berta G, Farkas J, Füredi N, Gaszner T, Pytel B, Reglődi D, Gaszner B. Downregulation of PACAP and the PAC1 Receptor in the Basal Ganglia, Substantia Nigra and Centrally Projecting Edinger-Westphal Nucleus in the Rotenone model of Parkinson's Disease. Int J Mol Sci 2023; 24:11843. [PMID: 37511603 PMCID: PMC10380602 DOI: 10.3390/ijms241411843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.
Collapse
Affiliation(s)
- Máté Fehér
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Department of Neurosurgery, Kaposi Mór Teaching Hospital, Tallián Gy. u. 20-32, H-7400 Kaposvár, Hungary
| | - Zsombor Márton
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Ákos Szabó
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - János Kocsa
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - József Farkas
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Tamás Gaszner
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Bence Pytel
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Dóra Reglődi
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- ELKH-PTE PACAP Research Group, Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience, University Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| |
Collapse
|
2
|
Ma X, Guo J, Fu Y, Shen C, Jiang P, Zhang Y, Zhang L, Yu Y, Fan J, Chai R. G protein-coupled receptors in cochlea: Potential therapeutic targets for hearing loss. Front Mol Neurosci 2022; 15:1028125. [PMID: 36311029 PMCID: PMC9596917 DOI: 10.3389/fnmol.2022.1028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hearing loss-related diseases caused by different factors is increasing worldwide year by year. Currently, however, the patient’s hearing loss has not been effectively improved. Therefore, there is an urgent need to adopt new treatment measures and treatment techniques to help improve the therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as crucial cell surface receptors, can widely participate in different physiological and pathological processes, particularly play an essential role in many disease occurrences and be served as promising therapeutic targets. However, no specific drugs on the market have been found to target the GPCRs of the cochlea. Interestingly, many recent studies have demonstrated that GPCRs can participate in various pathogenic process related to hearing loss in the cochlea including heredity, noise, ototoxic drugs, cochlear structure, and so on. In this review, we comprehensively summarize the functions of 53 GPCRs known in the cochlea and their relationships with hearing loss, and highlight the recent advances of new techniques used in cochlear study including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and CRISPR editing technology, as well as discuss in depth the future direction of novel GPCR-based drug development and gene therapy for cochlear hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical research in this area, and provide beneficial help for emerging GPCR-based cochlear therapies.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cangsong Shen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Yafeng Yu,
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Jiangang Fan,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
3
|
Horvath G, Reglodi D, Fabian E, Opper B. Effects of Pituitary Adenylate Cyclase Activating Polypeptide on Cell Death. Int J Mol Sci 2022; 23:ijms23094953. [PMID: 35563353 PMCID: PMC9100246 DOI: 10.3390/ijms23094953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) was first isolated as a hypothalamic peptide based on its efficacy to increase adenylate cyclase (AC) activity. It has a widespread distribution throughout the body including the nervous system and peripheral organs, where PACAP exerts protective effects both in vivo and in vitro through its anti-apoptotic, anti-inflammatory, and antioxidant functions. The aim of the present paper was to review the currently available literature regarding the effects of PACAP on cell death in vitro in neural and non-neural cells. Among others, its effect on apoptosis can be detected in cerebellar granule cells against different toxic stimuli. Different neural cell types from the cerebral cortex are also prevented from cell death. PACAP also shows effects on cell death in cells belonging to the peripheral nervous system and protects both neural and non-neural cells of sensory organs. In addition, cell survival-promoting effect can be observed in different peripheral organ systems including cardiovascular, immune, respiratory, gastrointestinal, urinary, and reproductive systems. The studies summarized here indicate its noteworthy effect on cell death in different in vitro models, suggesting PACAP’s potential therapeutic usage in several pathological conditions.
Collapse
|
4
|
Ruel J, Guitton MJ, Gratias P, Lenoir M, Shen S, Puel JL, Brabet P, Wang J. Endogenous Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Plays a Protective Effect Against Noise-Induced Hearing Loss. Front Cell Neurosci 2021; 15:658990. [PMID: 33828461 PMCID: PMC8019930 DOI: 10.3389/fncel.2021.658990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal polypeptide (VIP)-the secretin-glucagon family of neuropeptides. They act through two classes of receptors: PACAP type 1 (PAC1) and type 2 (VPAC1 and VPAC2). Among their pleiotropic effects throughout the body, PACAP functions as neuromodulators and neuroprotectors, rescuing neurons from apoptosis, mostly through the PAC1 receptor. To explore the potential protective effect of endogenous PACAP against Noise-induced hearing loss (NIHL), we used a knockout mouse model lacking PAC1 receptor expression (PACR1−/−) and a transgenic humanized mouse model expressing the human PAC1 receptor (TgHPAC1R). Based on complementary approaches combining electrophysiological, histochemical, and molecular biological evaluations, we show PAC1R expression in spiral ganglion neurons and in cochlear apical cells of the organ of Corti. Wild-type (WT), PAC1R−/−, and TgHPAC1R mice exhibit similar auditory thresholds. For most of the frequencies tested after acute noise damage, however, PAC1R−/− mice showed a larger elevation of the auditory threshold than did their WT counterparts. By contrast, in a transgene copy number-dependent fashion, TgHPAC1R mice showed smaller noise-induced elevations of auditory thresholds compared to their WT counterparts. Together, these findings suggest that PACAP could be a candidate for endogenous protection against noise-induced hearing loss.
Collapse
Affiliation(s)
- Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France.,Laboratoire de Neurosciences Cognitives, UMR7291 CNRS, Aix-Marseille Université, Marseille, France
| | - Matthieu J Guitton
- CERVO Brain Research Center, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Paul Gratias
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Marc Lenoir
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Sanbing Shen
- Regenerative Medicine Institute, National University of Ireland (NUI), Galway, Ireland
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Philippe Brabet
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| |
Collapse
|
5
|
Fulop DB, Humli V, Szepesy J, Ott V, Reglodi D, Gaszner B, Nemeth A, Szirmai A, Tamas L, Hashimoto H, Zelles T, Tamas A. Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Sci Rep 2019; 9:14598. [PMID: 31601840 PMCID: PMC6787024 DOI: 10.1038/s41598-019-50775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a regulatory and cytoprotective neuropeptide, its deficiency implies accelerated aging in mice. It is present in the auditory system having antiapoptotic effects. Expression of Ca2+-binding proteins and its PAC1 receptor differs in the inner ear of PACAP-deficient (KO) and wild-type (WT) mice. Our aim was to elucidate the functional role of PACAP in the auditory system. Auditory brainstem response (ABR) tests found higher hearing thresholds in KO mice at click and low frequency burst stimuli. Hearing impairment at higher frequencies showed as reduced ABR wave amplitudes and latencies in KO animals. Increase in neuronal activity, demonstrated by c-Fos immunolabeling, was lower in KO mice after noise exposure in the ventral and dorsal cochlear nuclei. Noise induced neuronal activation was similar in further relay nuclei of the auditory pathway of WT and KO mice. Based on the similar inflammatory and angiogenic protein profile data from cochlear duct lysates, neither inflammation nor disturbed angiogenesis, as potential pathological components in sensorineural hearing losses, seem to be involved in the pathomechanism of the presented functional and morphological changes in PACAP KO mice. The hearing impairment is probably concomitant with the markedly accelerated aging processes in these animals.
Collapse
Affiliation(s)
- Daniel Balazs Fulop
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Viktoria Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Virag Ott
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Adrienn Nemeth
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.,Department of Otorhinolaryngology, University of Pecs Medical School, Pecs, Hungary
| | - Agnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Laszlo Tamas
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary. .,Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
6
|
Kasica-Jarosz N, Podlasz P, Kaleczyc J. Pituitary adenylate cyclase-activating polypeptide (PACAP-38) plays an inhibitory role against inflammation induced by chemical damage to zebrafish hair cells. PLoS One 2018; 13:e0198180. [PMID: 29856797 PMCID: PMC5983416 DOI: 10.1371/journal.pone.0198180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP-38) is a common neuropeptide exerting a wide spectrum of functions in many fields, including immunology. In the present study, 5-day post-fertilization (dpf) zebrafish larvae of three diverse genetic lines [transgenic lines Tg(MPX:GFP) with GFP-labelled neutrophils and Tg(pou4f3:GAP-GFP) with GFP-labelled hair cells and the wild-type Tuebingen] were used to investigate an inhibitory role of PACAP-38 in inflammation associated with damaged hair cells of the lateral line. Individuals of each genetic line were assigned to four groups: (1) control, and those consisting of larvae exposed to (2) 10 µM CuSO4, (3) 10 µM CuSO4+100 nM PACAP-38 and (4) 100 nM PACAP-38, respectively. Forty-minute exposure to CuSO4 solution was applied to evoke necrosis of hair cells and consequent inflammation. The inhibitory role of PACAP-38 was investigated in vivo under a confocal microscope by counting neutrophils migrating towards damaged hair cells in Tg(MPX:GFP) larvae. In CuSO4-treated individuals, the number of neutrophils associated with hair cells was dramatically increased, while PACAP-38 co-treatment resulted in its over 2-fold decrease. However, co-treatment with PACAP-38 did not prevent hair cells from extensive necrosis, which was found in Tg(pou4f3:GAP-GFP) individuals. Real-Time PCR analysis performed in wild-type larvae demonstrated differential expression pattern of stress and inflammation inducible markers. The most significant findings showed that CuSO4 exposure up-regulated the expression of IL-8, IL-1β, IL-6 and ATF3, while after PACAP-38 co-treatment expression levels of these genes were significantly decreased. The presence of transcripts for all PACAP receptors in neutrophils was also revealed. Adcyap1r1a and vipr1b appeared to be predominant forms. The present results suggest that PACAP-38 should be considered as a factor playing an important regulatory role in inflammatory response associated with pathological processes affecting zebrafish hair cells and it cannot be excluded that this interesting property has more universal significance.
Collapse
Affiliation(s)
- Natalia Kasica-Jarosz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail: (NK); (PP)
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail: (NK); (PP)
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
7
|
Protective effects of pituitary adenylate cyclase activating polypeptide against neurotoxic agents. Neurotoxicology 2018; 66:185-194. [DOI: 10.1016/j.neuro.2018.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 01/28/2023]
|
8
|
Alteration of the PAC1 Receptor Expression in the Basal Ganglia of MPTP-Induced Parkinsonian Macaque Monkeys. Neurotox Res 2017; 33:702-715. [PMID: 29230633 DOI: 10.1007/s12640-017-9841-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-known neuropeptide with strong neurotrophic and neuroprotective effects. PACAP exerts its protective actions via three G protein-coupled receptors: the specific Pac1 receptor (Pac1R) and the Vpac1/Vpac2 receptors, the neuroprotective effects being mainly mediated by the Pac1R. The protective role of PACAP in models of Parkinson's disease and other neurodegenerative diseases is now well-established in both in vitro and in vivo studies. PACAP and its receptors occur in the mammalian brain, including regions associated with Parkinson's disease. PACAP receptor upregulation or downregulation has been reported in several injury models or human diseases, but no data are available on alterations of receptor expression in Parkinson's disease. The model closest to the human disease is the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced macaque model. Therefore, our present aim was to evaluate changes in Pac1R expression in basal ganglia related to Parkinson's disease in a macaque model. Monkeys were rendered parkinsonian with MPTP, and striatum, pallidum, and cortex were evaluated for Pac1R immunostaining. We found that Pac1R immunosignal was markedly reduced in the caudate nucleus, putamen, and internal and external parts of the globus pallidus, while the immunoreactivity remained unchanged in the cortex of MPTP-treated parkinsonian monkey brains. This decrease was attenuated in some brain areas in monkeys treated with L-DOPA. The strong, specific decrease of the PACAP receptor immunosignal in the basal ganglia of parkinsonian macaque monkey brains suggests that the PACAP/Pac1R system may play an important role in the development/progression of the disease.
Collapse
|
9
|
Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res 2016; 30:633-647. [PMID: 27557978 PMCID: PMC5047952 DOI: 10.1007/s12640-016-9659-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 08/09/2016] [Indexed: 12/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide, with known antiapoptotic functions. Our previous in vitro study has demonstrated the ameliorative role of PACAP-38 in chicken hair cells under oxidative stress conditions, but its effects on living hair cells is now yet known. Therefore, the aim of the present study was to investigate in vivo the protective role of PACAP-38 in hair cells found in zebrafish (Danio rerio) sense organs-neuromasts. To induce oxidative stress the 5-day postfertilization (dpf) zebrafish larvae were exposed to 1.5 mM H2O2 for 15 min or 1 h. This resulted in an increase in caspase-3 and p-38 MAPK level in the hair cells as well as in an impairment of the larvae basic behavior. To investigate the ameliorative role of PACAP-38, the larvae were incubated with a mixture of 1.5 mM H2O2 and 100 nM PACAP-38 following 1 h preincubation with 100 nM PACAP-38 only. PACAP-38 abilities to prevent hair cells from apoptosis were investigated. Whole-mount immunohistochemistry and confocal microscopy analyses revealed that PACAP-38 treatment decreased the cleaved caspase-3 level in the hair cells, but had no influence on p-38 MAPK. The analyses of basic locomotor activity supported the protective role of PACAP-38 by demonstrating the improvement of the fish behavior after PACAP-38 treatment. In summary, our in vivo findings demonstrate that PACAP-38 protects zebrafish hair cells from oxidative stress by attenuating oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, box 105J, 10-719, Olsztyn, Poland.
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Maria Sundvik
- Department of Anatomy, Neuroscience Center, University of Helsinki, Haartmaninkatu 8 (Biomedicum Helsinki), 00290, Helsinki, Finland
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, Szigeti 12, 7624, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, Szigeti 12, 7624, Pecs, Hungary
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, box 105J, 10-719, Olsztyn, Poland
| |
Collapse
|
10
|
Jiang L, Wang WH, Dong XQ, Yu WH, Du Q, Yang DB, Wang H, Shen YF. The change of plasma pituitary adenylate cyclase-activating polypeptide levels after aneurysmal subarachnoid hemorrhage. Acta Neurol Scand 2016; 134:131-9. [PMID: 26471292 DOI: 10.1111/ane.12522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Elevated circulating pituitary adenylate cyclase-activating polypeptide (PACAP) levels have been demonstrated to be associated with clinical outcomes of severe traumatic brain injury. The current study aimed to confirm whether elevated plasma PACAP levels are predictive of clinical outcomes of aneurysmal subarachnoid hemorrhage (aSAH). MATERIALS AND METHODS One hundred and eighteen aSAH patients and 118 controls were recruited. Plasma PACAP concentrations were determined using enzyme-linked immunosorbent assay. Patients were followed up until death or completion of 6 months after aSAH. An unfavorable outcome was defined as Glasgow Outcome Scale score of 1-3. RESULTS The admission PACAP levels were significantly elevated in all patients (296.6 ± 119.7 pg/ml) compared with controls (77.1 ± 17.9 pg/ml, P < 0.001). Plasma PACAP levels were independently associated with clinical severity indicated by World Federation of Neurological Surgeons (WFNS) score (t = 4.745, P < 0.001) and Fisher score (t = 4.239, P < 0.001) using a multivariate linear regression. PACAP was identified as an independent predictor for 6-month mortality [odds ratio (OR), 1.014; 95% confidence interval (CI), 1.005-1.030; P < 0.001] and 6-month unfavorable outcome (OR, 1.012; 95% CI, 1.006-1.028; P < 0.001) and 6-month overall survival (hazard ratio, 1.016; 95% CI, 1.008-1.023; P < 0.001) using a binary logistic regression analysis and a Cox's proportional hazard analysis, respectively. PACAP had similar predictive values compared with WFNS score and Fisher score according to the receiver operating characteristic curve analysis. CONCLUSIONS Higher plasma PACAP levels are associated with clinical severity and long-term prognosis of aSAH patients, and PACAP has potential to be a good prognostic biomarker of aSAH.
Collapse
Affiliation(s)
- L. Jiang
- Department of Neurosurgery; The Hangzhou First People's Hospital; Nanjing Medical University Affiliated Hangzhou Hospital; Hangzhou China
| | - W.-H. Wang
- Department of Neurosurgery; The Affiliated Zhongda Hospital of Southeast University; Nanjing China
| | - X.-Q. Dong
- Department of Neurosurgery; The Hangzhou First People's Hospital; Nanjing Medical University Affiliated Hangzhou Hospital; Hangzhou China
| | - W.-H. Yu
- Department of Neurosurgery; The Hangzhou First People's Hospital; Nanjing Medical University Affiliated Hangzhou Hospital; Hangzhou China
| | - Q. Du
- Department of Neurosurgery; The Hangzhou First People's Hospital; Nanjing Medical University Affiliated Hangzhou Hospital; Hangzhou China
| | - D.-B. Yang
- Department of Neurosurgery; The Hangzhou First People's Hospital; Nanjing Medical University Affiliated Hangzhou Hospital; Hangzhou China
| | - H. Wang
- Department of Neurosurgery; The Hangzhou First People's Hospital; Nanjing Medical University Affiliated Hangzhou Hospital; Hangzhou China
| | - Y.-F. Shen
- Department of Neurosurgery; The Hangzhou First People's Hospital; Nanjing Medical University Affiliated Hangzhou Hospital; Hangzhou China
| |
Collapse
|
11
|
Guo X, Yu R, Xu Y, Lian R, Yu Y, Cui Z, Ji Q, Chen J, Li Z, Liu H, Chen J. PAC1R agonist maxadilan enhances hADSC viability and neural differentiation potential. J Cell Mol Med 2016; 20:874-90. [PMID: 26798992 PMCID: PMC4831362 DOI: 10.1111/jcmm.12772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase‐activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. However, little is known about its presence or effects in human adipose‐derived stem cells (hADSCs). In this study, the expression of PACAP type I receptor (PAC1R) was first confirmed in hADSCs. Maxadilan, a specific agonist of PAC1R, could increase hADSC proliferation as determined by Cell Counting Kit‐8 and cell cycle analysis and promote migration as shown in wound‐healing assays. Maxadilan also showed anti‐apoptotic activity in hADSCs against serum withdrawal‐induced apoptosis based on Annexin V/propidium iodide analysis and mitochondrial membrane potential assays. The anti‐apoptotic effects of maxadilan correlated with the down‐regulation of Cleaved Caspase 3 and Caspase 9 as well as up‐regulation of Bcl‐2. The chemical neural differentiation potential could be enhanced by maxadilan as indicated through quantitative PCR, Western blot and cell morphology analysis. Moreover, cytokine neural redifferentiation of hADSCs treated with maxadilan acquired stronger neuron‐like functions with higher voltage‐dependent tetrodotoxin‐sensitive sodium currents, higher outward potassium currents and partial electrical impulses as determined using whole‐cell patch clamp recordings. Maxadilan up‐regulated the Wnt/β‐catenin signalling pathway associated with dimer‐dependent activity of PAC1R, promoting cell viability that was inhibited by XAV939, and it also activated the protein kinase A (PKA) signalling pathway associated with ligand‐dependent activity of PAC1R, enhancing cell viability and neural differentiation potential that was inhibited by H‐89. In summary, these results demonstrated that PAC1R is present in hADSCs, and maxadilan could enhance hADSC viability and neural differentiation potential in neural differentiation medium.
Collapse
Affiliation(s)
- Xiaoling Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Rongjie Yu
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Ying Xu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Ruiling Lian
- Department of Ophthalmology, The First Clinical Medical College of Jinan University, Guangzhou, China
| | - Yankun Yu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zekai Cui
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Qingshan Ji
- Department of Ophthalmology, Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Junhe Chen
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Zhijie Li
- Eye Institute, Medical College of Jinan University, Guangzhou, China
| | - Hongwei Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Department of Ophthalmology, The First Clinical Medical College of Jinan University, Guangzhou, China.,Eye Institute, Medical College of Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Ma BQ, Zhang M, Ba L. Plasma pituitary adenylate cyclase-activating polypeptide concentrations and mortality after acute spontaneous basal ganglia hemorrhage. Clin Chim Acta 2014; 439:102-6. [PMID: 25314937 DOI: 10.1016/j.cca.2014.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Plasma pituitary adenylate cyclase activating polypeptide (PACAP) concentrations are elevated after traumatic brain injury. We assessed the prognostic value of PACAP for short-term and long-term mortality of acute intracerebral hemorrhage (ICH) patients. METHODS A total of 150 patients and 150 age- and gender- matched healthy controls were recruited. The plasma PACAP concentrations were measured using sandwich immunoassays. ICH severity was assessed using hematoma volume and National Institutes of Health Stroke Scale (NIHSS) score. The end points included 1-week mortality and 6-month mortality. The relationships between plasma PACAP concentrations and ICH severity and the end points were analyzed statistically. RESULTS Plasma PACAP concentrations were statistically significantly higher in the ICH patients than in the healthy controls and were correlated positively with hematoma volumes and NIHSS scores using a multivariate linear regression. Multivariate analysis results indicated that plasma PACAP concentration was an independent predictor of 1-week mortality, 6-month mortality and 6-month overall survival. It also had high predictive value based on receiver operating characteristic curve. CONCLUSIONS Plasma PACAP concentrations are increased and are highly associated with the severity of ICH; PACAP may be a good predictor of short-term and long-term mortality of ICH.
Collapse
Affiliation(s)
- Bu-Qing Ma
- Department of Emergency, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310000, PR China; Department of Emergency, The Third People's Hospital of Hangzhou, 38 West Lake Avenue, Hangzhou 310000, PR China
| | - Mao Zhang
- Department of Emergency, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310000, PR China
| | - Li Ba
- Department of Emergency, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310000, PR China.
| |
Collapse
|
13
|
Nemeth A, Szabadfi K, Fulop B, Reglodi D, Kiss P, Farkas J, Szalontai B, Gabriel R, Hashimoto H, Tamas A. Examination of calcium-binding protein expression in the inner ear of wild-type, heterozygous and homozygous pituitary adenylate cyclase-activating polypeptide (PACAP)-knockout mice in kanamycin-induced ototoxicity. Neurotox Res 2013; 25:57-67. [PMID: 24155155 DOI: 10.1007/s12640-013-9428-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with diverse biological effects. It also occurs and exerts protective effects in sensory organs; however, little is known about its effects in the auditory system. Recently, we have shown that PACAP protects cochlear cells against oxidative-stress-induced apoptosis and homozygous PACAP-deficient animals show stronger expression of Ca(2+)-binding proteins in the hair cells of the inner ear, but there are no data about the consequences of the lack of endogenous PACAP in different ototoxic insults such as aminoglycoside-induced toxicity. In this study, we examined the effect of kanamycin treatment on Ca(2+)-binding protein expression in hair cells of wild-type, heterozygous and homozygous PACAP-deficient mice. We treated 5-day-old mice with kanamycin, and 2 days later, we examined the Ca(2+)-binding protein expression of the hair cells with immunohistochemistry. We found stronger expression of Ca(2+)-binding proteins in the hair cells of control heterozygous and homozygous PACAP-deficient mice compared with wild-type animals. Kanamycin induced a significant increase in Ca(2+)-binding protein expression in wild-type and heterozygous PACAP-deficient mice, but the baseline higher expression in homozygous PACAP-deficient mice did not show further changes after the treatment. Elevated endolymphatic Ca(2+) is deleterious for the cochlear function, against which the high concentration of Ca(2+)-buffers in hair cells may protect. Meanwhile, the increased immunoreactivity of Ca(2+)-binding proteins in the absence of PACAP provide further evidence for the important protective role of PACAP in ototoxicity, but further investigations are necessary to examine the exact role of endogenous PACAP in ototoxic insults.
Collapse
Affiliation(s)
- A Nemeth
- Department of Oto-rhino-laryngology, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tamas A, Reglodi D, Farkas O, Kovesdi E, Pal J, Povlishock JT, Schwarcz A, Czeiter E, Szanto Z, Doczi T, Buki A, Bukovics P. Effect of PACAP in central and peripheral nerve injuries. Int J Mol Sci 2012; 13:8430-8448. [PMID: 22942712 PMCID: PMC3430243 DOI: 10.3390/ijms13078430] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system.
Collapse
Affiliation(s)
- Andrea Tamas
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
| | - Dora Reglodi
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
| | - Orsolya Farkas
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Erzsebet Kovesdi
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Jozsef Pal
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street Richmond, Richmond, VA 23219, USA; E-Mail:
| | - Attila Schwarcz
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Endre Czeiter
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Zalan Szanto
- Department of Surgery, Medical School, University of Pecs, Ret u. 2., H-7623 Pecs, Hungary; E-Mail:
| | - Tamas Doczi
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Andras Buki
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Peter Bukovics
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| |
Collapse
|
15
|
Fabian E, Reglodi D, Mester L, Szabo A, Szabadfi K, Tamas A, Toth G, Kovacs K. Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelial cells exposed to oxidative stress. J Mol Neurosci 2012; 48:493-500. [PMID: 22644900 DOI: 10.1007/s12031-012-9812-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/08/2012] [Indexed: 12/20/2022]
Abstract
The integrity of retinal pigment epithelial cells is critical for photoreceptor survival and vision. Pituitary adenylate cyclase activating polypeptide (PACAP) exerts retinoprotective effects against several types of injuries in vivo, including optic nerve transection, retinal ischemia, excitotoxic injuries, UVA-induced lesion, and diabetic retinopathy. In a recent study, we have proven that PACAP is also protective in oxidative stress-induced injury in human pigment epithelial cells (ARPE-19 cells). The aim of the present study was to investigate the possible mechanisms of this protection. ARPE cells were exposed to a 24-h hydrogen peroxide treatment. Expressions of kinases and apoptotic markers were studied by complex array kits and Western blot. Oxidative stress induced the activation of several apoptotic markers, including Bad, Bax, HIF-1α, several heat shock proteins, TNF-related apoptosis-inducing ligand, and Fas-associated protein with death domain, while PACAP treatment decreased them. The changes in the expression of MAP kinases showed that PACAP activated the protective ERK1/2 and downstream CREB, and decreased the activation of the pro-apoptotic p38MAPK and c-Jun N-terminal kinase, an effect opposite to that observed with only oxidative stress. Furthermore, PACAP increased the activation of the protective Akt pathway. In addition, the effects of oxidative stress on several other signaling molecules were counteracted by PACAP treatment (Chk2, Yes, Lyn, paxillin, p53, PLC, STAT4, RSK). These play a role in cell death, cell cycle, inflammation, adhesion, differentiation and proliferation. In summary, PACAP, acting at several levels, influences the balance between pro- and anti-apoptotic factors in favor of anti-apoptosis, thereby providing protection in oxidative stress-induced injury of human retinal pigment epithelial cells.
Collapse
Affiliation(s)
- E Fabian
- Department of Anatomy, PTE-MTA Lendulet PACAP Research Team, University of Pecs, 7624 Pecs, Szigeti u 12, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhao Z, Yu R, Yang J, Liu X, Tan M, Li H, Chen J. Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype. PLoS One 2012; 7:e33953. [PMID: 22457805 PMCID: PMC3311553 DOI: 10.1371/journal.pone.0033953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. Maxadilan, a 61-amino acid vasodilatory peptide, specifically activates the PACAP type I receptor (PAC1). Although PAC1 has been identified in embryonic stem cells, little is known about its presence or effects in human induced pluripotent stem (iPS) cells. In the present study, we investigated the expression of PAC1 in human iPS cells by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. To study the physiological effects mediated by PAC1, we evaluated the role of maxadilan in preventing apoptotic cell death induced by ultraviolet C (UVC). After exposure to UVC, the iPS cells showed a marked reduction in cell viability and a parallel increase of apoptotic cells, as demonstrated by WST-8 analysis, annexin V/propidium iodide (PI) analysis and the terminal transferase dUTP nick end labeling (TUNEL) assay. The addition of 30 nM of maxadilan dramatically increased iPS cell viability and reduced the percentage of apoptotic cells. The anti-apoptotic effects of maxadilan were correlated to the downregulation of caspase-3 and caspase-9. Concomitantly, immunofluorescence, western blot analysis, real-time quantitative polymerase chain reaction (RT-qPCR) analysis and in vitro differentiation results showed that maxadilan did not affect the pluripotent state of iPS cells. Moreover, karyotype analysis showed that maxadilan did not affect the karyotype of iPS cells. In summary, these results demonstrate that PAC1 is present in iPS cells and that maxadilan effectively protects iPS cells against UVC-induced apoptotic cell death while not affecting the pluripotent state or karyotype.
Collapse
Affiliation(s)
- Zhiyi Zhao
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of ophthalmology, Medical College, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Rongjie Yu
- Bio-engineering Institute of Jinan University, Jinan University, Guangzhou, China
| | - Jiayin Yang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofei Liu
- Bio-engineering Institute of Jinan University, Jinan University, Guangzhou, China
| | - Meihua Tan
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of ophthalmology, Medical College, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - HongYang Li
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of ophthalmology, Medical College, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of ophthalmology, Medical College, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- * E-mail:
| |
Collapse
|
17
|
Nakamachi T, Matkovits A, Seki T, Shioda S. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide in the retina. Front Endocrinol (Lausanne) 2012; 3:145. [PMID: 23189073 PMCID: PMC3504973 DOI: 10.3389/fendo.2012.00145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Department of Anatomy, Showa University School of MedicineTokyo, Japan
- Center for Biotechnology, Showa UniversityTokyo, Japan
| | - Attila Matkovits
- Department of Anatomy, Showa University School of MedicineTokyo, Japan
- Center for Biotechnology, Showa UniversityTokyo, Japan
| | - Tamotsu Seki
- Department of Anatomy, Showa University School of MedicineTokyo, Japan
- Center for Biotechnology, Showa UniversityTokyo, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of MedicineTokyo, Japan
- *Correspondence: Seiji Shioda, Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan. e-mail:
| |
Collapse
|
18
|
Tamas A, Szabadfi K, Nemeth A, Fulop B, Kiss P, Atlasz T, Gabriel R, Hashimoto H, Baba A, Shintani N, Helyes Z, Reglodi D. Comparative Examination of Inner Ear in Wild Type and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)-Deficient Mice. Neurotox Res 2011; 21:435-44. [DOI: 10.1007/s12640-011-9298-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/17/2011] [Accepted: 12/06/2011] [Indexed: 12/30/2022]
|
19
|
Mester L, Kovacs K, Racz B, Solti I, Atlasz T, Szabadfi K, Tamas A, Reglodi D. Pituitary Adenylate Cyclase-Activating Polypeptide is Protective Against Oxidative Stress in Human Retinal Pigment Epithelial Cells. J Mol Neurosci 2010; 43:35-43. [DOI: 10.1007/s12031-010-9427-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 07/07/2010] [Indexed: 12/27/2022]
|
20
|
Wang Z, Liu Y, Han N, Chen X, Yu W, Zhang W, Zou F. Profiles of oxidative stress-related microRNA and mRNA expression in auditory cells. Brain Res 2010; 1346:14-25. [DOI: 10.1016/j.brainres.2010.05.059] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 11/30/2022]
|
21
|
Racz B, Reglodi D, Horvath G, Szigeti A, Balatonyi B, Roth E, Weber G, Alotti N, Toth G, Gasz B. Protective Effect of PACAP Against Doxorubicin-Induced Cell Death in Cardiomyocyte Culture. J Mol Neurosci 2010; 42:419-27. [DOI: 10.1007/s12031-010-9349-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/04/2010] [Indexed: 12/01/2022]
|
22
|
Ohtaki H, Satoh A, Nakamachi T, Yofu S, Dohi K, Mori H, Ohara K, Miyamoto K, Hashimoto H, Shintani N, Baba A, Matsunaga M, Shioda S. Regulation of Oxidative Stress by Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Mediated by PACAP Receptor. J Mol Neurosci 2010; 42:397-403. [DOI: 10.1007/s12031-010-9350-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/09/2010] [Indexed: 11/28/2022]
|