1
|
An overview of human pericardial space and pericardial fluid. Cardiovasc Pathol 2021; 53:107346. [PMID: 34023529 DOI: 10.1016/j.carpath.2021.107346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
The pericardium is a double-layered fibro-serous sac that envelops the majority of the surface of the heart as well as the great vessels. Pericardial fluid is also contained within the pericardial space. Together, the pericardium and pericardial fluid contribute to a homeostatic environment that facilitates normal cardiac function. Different diseases and procedural interventions may disrupt this homeostatic space causing an imbalance in the composition of immune mediators or by mechanical stress. Inflammatory cells, cytokines, and chemokines are present in the pericardial space. How these specific mediators contribute to different diseases is the subject of debate and research. With the advent of highly specialized assays that can identify and quantify various mediators we can potentially establish specific and sensitive biomarkers that can be used to differentiate pathologies, and aid clinicians in improving clinical outcomes for patients.
Collapse
|
2
|
Research progress of ghrelin on cardiovascular disease. Biosci Rep 2021; 41:227556. [PMID: 33427286 PMCID: PMC7823193 DOI: 10.1042/bsr20203387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Ghrelin, a 28-aminoacid peptide, was isolated from the human and rat stomach and identified in 1999 as an endogenous ligand for the growth hormone secretagogue-receptor (GHS-R). In addition to stimulating appetite and regulating energy balance, ghrelin and its receptor GHS-R1a have a direct effect on the cardiovascular system. In recent years, it has been shown that ghrelin exerts cardioprotective effects, including the modulation of sympathetic activity and hypertension, enhancement of the vascular activity and angiogenesis, inhibition of arrhythmias, reduction in heart failure and inhibition of cardiac remodeling after myocardial infarction (MI). The cardiovascular protective effect of ghrelin may be associated with anti-inflammation, anti-apoptosis, inhibited sympathetic nerve activation, regulated autophagy, and endothelial dysfunction. However, the molecular mechanisms underlying the effects of ghrelin on the cardiovascular system have not been fully elucidated, and no specific therapeutic agent has been established. It is important to further explore the pharmacological potential of ghrelin pathway modulation for the treatment of cardiovascular diseases.
Collapse
|
3
|
Trindade F, Vitorino R, Leite-Moreira A, Falcão-Pires I. Pericardial fluid: an underrated molecular library of heart conditions and a potential vehicle for cardiac therapy. Basic Res Cardiol 2019; 114:10. [PMID: 30659359 DOI: 10.1007/s00395-019-0716-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
|
4
|
Meadows KL. Ischemic stroke and select adipose-derived and sex hormones: a review. Hormones (Athens) 2018; 17:167-182. [PMID: 29876798 DOI: 10.1007/s42000-018-0034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA, 01536, USA.
| |
Collapse
|
5
|
Sullivan R, McGirr R, Hu S, Tan A, Wu D, Charron C, Lalonde T, Arany E, Chakrabarti S, Luyt L, Dhanvantari S. Changes in the Cardiac GHSR1a-Ghrelin System Correlate With Myocardial Dysfunction in Diabetic Cardiomyopathy in Mice. J Endocr Soc 2017; 2:178-189. [PMID: 29450407 PMCID: PMC5799831 DOI: 10.1210/js.2017-00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023] Open
Abstract
Ghrelin and its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), are present in cardiac tissue. Activation of GHSR1a by ghrelin promotes cardiomyocyte contractility and survival, and changes in myocardial GHSR1a and circulating ghrelin track with end-stage heart failure, leading to the hypothesis that GHSR1a is a biomarker for heart failure. We hypothesized that GHSR1a could also be a biomarker for diabetic cardiomyopathy (DCM). We used two models of streptozotocin (STZ)-induced DCM: group 1, adult mice treated with 35 mg/kg STZ for 3 days; and group 2, neonatal mice treated with 70 mg/kg STZ at days 2 and 5 after birth. In group 1, mild fasting hyperglycemia (11 mM) was first detected 8 weeks after the last injection, and in group 2, severe fasting hyperglycemia (20 mM) was first detected 1 to 3 weeks after the last injection. In group 1, left ventricular function was slightly impaired as measured by echocardiography, and Western blot analysis showed a significant decrease in myocardial GHSR1a. In group 2, GHSR1a levels were also decreased as assessed by Cy5-ghrelin(1–19) fluorescence microscopy, and there was a significant negative correlation between GHSR1a levels and glucose tolerance. There were significant positive correlations between GHSR1a and ghrelin and between GHSR1a and sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a), a marker for contractility, but not between GHSR1a and B-type natriuretic peptide, a marker for heart failure. We conclude that the subclinical stage of DCM is accompanied by alterations in the myocardial ghrelin-GHSR1a system, suggesting the possibility of a biomarker for DCM.
Collapse
Affiliation(s)
- Rebecca Sullivan
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Rebecca McGirr
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Shirley Hu
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
| | - Alice Tan
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Derek Wu
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Carlie Charron
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Tyler Lalonde
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Edith Arany
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada
| | - Leonard Luyt
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.,Departments of Oncology and Medical Imaging, Western University, London, Ontario N6A 4L6, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Savita Dhanvantari
- Imaging Research, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4V2, Canada.,Department of Medical Biophysics, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
6
|
Kilic N, Dagli N, Aydin S, Erman F, Bek Y, Akin O, Kilic SS, Erdemli HK, Alacam H. Saliva/serum ghrelin, obestatin and homocysteine levels in patients with ischaemic heart disease. Cardiovasc J Afr 2017; 28:159-164. [PMID: 28759087 PMCID: PMC5558140 DOI: 10.5830/cvja-2016-075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 07/17/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND We aimed to compare ghrelin, obestatin, homocysteine (Hcy), vitamin B12 and folate levels in the serum and saliva of ischaemic heart disease patients. METHODS Serum and saliva were collected from 33 ischaemic heart disease (IHD) patients and 28 age- and body mass index-matched healthy individuals. Levels of acylated and desacylated ghrelin, obestatin and Hcy were determined using the ELISA method. RESULTS Acylated ghrelin, desacylated ghrelin and obestatin levels in the saliva were found to be higher than those in the serum of the control group, while acylated and desacylated ghrelin levels in the saliva were significantly lower than those in the serum. Obestatin levels were higher in IHD patients (p = 0.001). Saliva and serum vitamin B12 and folate levels in IHD patients were significantly lower than in the control group (p = 0.001). CONCLUSIONS It was determined that serum ghrelin levels increased in ischaemic heart disease patients, while serum levels of obestatin decreased.
Collapse
Affiliation(s)
- Nermin Kilic
- Department of Medical Biochemistry, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Necati Dagli
- Department of Cardiology, School of Medicine, Firat University, Elazig, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry, School of Medicine, Firat University, Elazig, Turkey
| | - Fazilet Erman
- Department of Medical Biochemistry, School of Medicine, Firat University, Elazig, Turkey
| | - Yuksel Bek
- Department of Biostatistics, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Okhan Akin
- Biochemistry Laboratory, Kecioren Education and Research Hospital, Ankara, Turkey
| | - S S Kilic
- Department of Infectious Diseases and Microbiology, Training and Research Hospital, Samsun, Turkey
| | - Haci Kemal Erdemli
- Department of Medical Biochemistry, Corum Training and Research Hospital, Corum, Turkey
| | - Hasan Alacam
- Department of Medical Biochemistry, School of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
7
|
Abstract
Ghrelin is a small peptide released primarily from the stomach. It is a potent stimulator of growth hormone secretion from the pituitary gland and is well known for its regulation of metabolism and appetite. There is also a strong relationship between ghrelin and the cardiovascular system. Ghrelin receptors are present throughout the heart and vasculature and have been linked with molecular pathways, including, but not limited to, the regulation of intracellular calcium concentration, inhibition of proapoptotic cascades, and protection against oxidative damage. Ghrelin shows robust cardioprotective effects including enhancing endothelial and vascular function, preventing atherosclerosis, inhibiting sympathetic drive, and decreasing blood pressure. After myocardial infarction, exogenous administration of ghrelin preserves cardiac function, reduces the incidence of fatal arrhythmias, and attenuates apoptosis and ventricular remodeling, leading to improvements in heart failure. It ameliorates cachexia in end-stage congestive heart failure patients and has shown clinical benefit in pulmonary hypertension. Nonetheless, since ghrelin's discovery is relatively recent, there remains a substantial amount of research needed to fully understand its clinical significance in cardiovascular disease.
Collapse
|
8
|
Neale JPH, Pearson JT, Katare R, Schwenke DO. Ghrelin, MicroRNAs, and Critical Limb Ischemia: Hungering for a Novel Treatment Option. Front Endocrinol (Lausanne) 2017; 8:350. [PMID: 29326658 PMCID: PMC5733488 DOI: 10.3389/fendo.2017.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease. It is characterized by chronic pain at rest, skin ulcerations, and gangrene tissue loss. CLI is a highly morbid condition, resulting in a severely diminished quality of life and a significant risk of mortality. The primary goal of therapy for CLI is to restore blood flow to the affected limb, which is only possible by surgery, but is inadvisable in up to 50% of patients. This subset of patients who are not candidates for revascularisation are referred to as "no-option" patients and are the focus of investigation for novel therapeutic strategies. Angiogenesis, arteriogenesis and vasculogenesis are the processes whereby new blood vessel networks form from the pre-existing vasculature and primordial cells, respectively. In therapeutic angiogenesis, exogenous stimulants are administered to promote angiogenesis and augment limb perfusion, offering a potential treatment option for "no option" patients. However, to date, very few clinical trials of therapeutic angiogenesis in patients with CLI have reported clinically significant results, and it remains a major challenge. Ghrelin, a 28-amino acid peptide, is emerging as a potential novel therapeutic for CLI. In pre-clinical models, exogenous ghrelin has been shown to induce therapeutic angiogenesis, promote muscle regeneration, and reduce oxidative stress via the modulation of microRNAs (miRs). miRs are endogenous, small, non-coding ribonucleic acids of ~20-22 nucleotides which regulate gene expression at the post-transcriptional level by either translational inhibition or by messenger ribonucleic acid cleavage. This review focuses on the mounting evidence for the use of ghrelin as a novel therapeutic for CLI, and highlights the miRs which orchestrate these physiological events.
Collapse
Affiliation(s)
- Joshua P. H. Neale
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
- *Correspondence: Rajesh Katare, ; Daryl O. Schwenke,
| | - Daryl O. Schwenke
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
- *Correspondence: Rajesh Katare, ; Daryl O. Schwenke,
| |
Collapse
|
9
|
Soeki T. Ghrelin and its receptor: The role of the ghrelin signaling system in regulating cardiac function. ACTA ACUST UNITED AC 2014; 192-193:57-8. [DOI: 10.1016/j.regpep.2014.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 08/21/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
|