1
|
Wang D, Yang Y, Zou X, Zhang J, Zheng Z, Wang Z. Antioxidant Apigenin Relieves Age-Related Muscle Atrophy by Inhibiting Oxidative Stress and Hyperactive Mitophagy and Apoptosis in Skeletal Muscle of Mice. J Gerontol A Biol Sci Med Sci 2021; 75:2081-2088. [PMID: 32857105 PMCID: PMC7566467 DOI: 10.1093/gerona/glaa214] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle atrophy in the aged causes loss in muscle mass and functions. Naturally occurring antioxidant flavonoid apigenin is able to ameliorate obesity- and denervation-induced muscle atrophies, but its effects on age-related muscle atrophy remain unknown. We hypothesized that apigenin can relieve muscle atrophy in aged mice, probably through special effects on reactive oxygen species and enzymes with antioxidant functions. For the male mice of the study, apigenin showed significant dose-dependent effects in relieving aging-related muscle atrophy according to results of frailty index as indicator of frailty associated with aging, grip strength, and running distance. Apigenin also improved myofiber size and morphological features and increased mitochondria number and volume, as manifested by succinate dehydrogenase staining and transmission electron microscopy. Our tests also suggested that apigenin promoted activities of enzymes such as superoxide dismutase and glutathione peroxidase for antioxidation and those for aerobic respiration such as mitochondrial respiratory enzyme complexes I, II, and IV, increased ATP, and enhanced expression of genes such as peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A, nuclear respiratory factor-1, and ATP5B involved in mitochondrial biogenesis. The data also suggested that apigenin inhibited Bcl-2/adenovirus E1B 19kD-interacting protein 3 and DNA fragmentation as indicators of mitophagy and apoptosis in aged mice with skeletal muscle atrophy. Together, the results suggest that apigenin relieves age-related skeletal muscle atrophy through reducing oxidative stress and inhibiting hyperactive autophagy and apoptosis.
Collapse
Affiliation(s)
- Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Guangdong, China.,Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Xiaohu Zou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Guangdong, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Guangdong, China
| | - Zena Zheng
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Guangdong, China
| | - Ziwei Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Guangdong, China
| |
Collapse
|
2
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
3
|
Shan H, Zheng X, Li M. The effects of Astragalus Membranaceus Active Extracts on Autophagy-related Diseases. Int J Mol Sci 2019; 20:E1904. [PMID: 30999666 PMCID: PMC6514605 DOI: 10.3390/ijms20081904] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved 'self-eating' process that maintains cellular, tissue, and organismal homeostasis. New studies on autophagy, mediated by subsets of autophagy proteins, are emerging in many physiological and pathological processes. Astragalus membranaceus (AM), also named Huangqi, is one of the fundamental herbs in traditional Chinese medicine and its extracts have been proved to possess many biological activities related to autophagy, including anti-oxidation, anti-inflammation, anticancer, anti-photoaging, and improvement of cardiomyocyte function. Evidence suggests that AM extracts can have therapeutic potential in autophagy dysregulation-associated diseases because of their biological positive effects. Here we will review the literature concerning the effects of AM extracts on autophagy dysregulation-associated diseases.
Collapse
Affiliation(s)
- Hao Shan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong 510006, China.
| | - Xueping Zheng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong 510006, China.
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
4
|
Yin Y, Lu L, Wang D, Shi Y, Wang M, Huang Y, Chen D, Deng C, Chen J, Lv P, Wang Y, Li C, Wei LB. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts. Cell Biochem Biophys 2017; 73:433-439. [PMID: 27352334 DOI: 10.1007/s12013-015-0659-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis.
Collapse
Affiliation(s)
- Yi Yin
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lu Lu
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Dongtao Wang
- Department of Nephrology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530011, China
| | - Ying Shi
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ming Wang
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yanfeng Huang
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Dexiu Chen
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Cong Deng
- Division of TCM, Guangzhou Nansha Central Hospital, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Jiebin Chen
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Peijia Lv
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanjing Wang
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chengjie Li
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lian-Bo Wei
- China School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Division of Nephrology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510280, China.
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
6
|
Sim MK. Des-aspartate-angiotensin I, a novel angiotensin AT(1) receptor drug. Eur J Pharmacol 2015; 760:36-41. [PMID: 25891368 DOI: 10.1016/j.ejphar.2015.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 01/13/2023]
Abstract
The review describes DAA-I (des-aspartate-angiotensin-I) as a prototype of a novel class of drugs that acts as agonists on the angiotensin AT1 receptor or ARAs (angiotensin receptor agonists). DAA-I is a component of the renin angiotensin system. Earlier studies showed that it was rapidly metabolized to angiotensin III. However, when administered at doses below the Km of enzymes, DAA-I produces specific actions that antagonize the deleterious actions of angiotensin II. DAA-I exerts protective actions in animal models of eight human pathologies in which angiotensin II is implicated. The pathologies include cardiac hypertrophy, neointima growth and cardiovascular hypertrophy, myocardial-ischemia reperfusion injury, hyperglycemia and insulin resistance, chemical induced inflammation, and exercise-induced skeletal muscle inflammation. Binding of DAA-I to the angiotensin AT1 receptors releases prostaglandins, which could either function as autocrines/paracrines or second messengers and attenuate the deleterious actions of angiotensin II. It is possible that in in vivo DAA-I functions as a physiological antagonist to angiotensin II, and exogenous DAA-I is a novel class of angiotensin receptor drug that could rival the angiotensin receptor blockers.
Collapse
Affiliation(s)
- Meng-Kwoon Sim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore.
| |
Collapse
|
7
|
Seo H, Lee NH, Ryu S. Antioxidant and antiapoptotic effects of pine needle powder ingestion and endurance training in high cholesterol-fed rats. J Exerc Nutrition Biochem 2014; 18:301-9. [PMID: 25566467 PMCID: PMC4241895 DOI: 10.5717/jenb.2014.18.3.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 11/06/2022] Open
Abstract
[Purpose] Pine needle is a kind of medicinal plant ingested traditionally for a variety of purposes. Therefore, we examined the antioxidant and antiapoptotic capacities of pine needle ingestion in high cholesterol-fed and endurance exercise-trained rats. [Methods] Animals were divided into six groups as; CON: normal diet control group; EX: normal diet and exercise training group; HC: high cholesterol diet group; HCE: high cholesterol diet and exercise training group; HCP: high cholesterol and pine needle group; HCPE: high-cholesterol and pine needle diet with exercise training group, respectively. Each group consisted of seven Sprague-Dawley male rats. The swim-training groups, EX, HCE, and HCPE swam in the swim pool 60 min/d and 5 d/week for 5 weeks. During the rearing periods, freeze-dried pine needle powder mix with 5% of the high cholesterol diet was supplied to the HCP and HCPE groups. Gastrocnemius muscle was used as the skeletal muscle. Malondialdehyde (MDA), Mn-containing superoxide dismutase (Mn-SOD), Cu, Zn containing superoxide dismutase (Cu,Zn-SOD), and glutathione peroxidase (GPx) were analyzed for their antioxidant capacities. Finally, p53, Bcl-2 (B-cell lymphoma 2), caspase-3 protein expression was analyzed to determine antiapoptotic ability. [Results] MDA showed low content in HCPE compared to the HC. Mn-SOD, Cu,Zn-SOD, and GPx protein expression was significantly increased by pine needle ingestion and/or exercise training. In addition, suppression of p53 protein expression resulted in Bcl-2 increase followed by caspase-3 decrease with/without pine needle ingestion and exercise training. [Conclusion] When exercise training in addition to pine needle powder ingestion may be a helpful nutritional regimen to athletes and exercisers.
Collapse
Affiliation(s)
- Hyobin Seo
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea ; Institute of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| | - Nam-Ho Lee
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea
| | - Sungpil Ryu
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea ; Institute of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| |
Collapse
|