1
|
Feng L, Li S, Wang C, Yang J. Current Status and Future Perspective on Molecular Imaging and Treatment of Neuroblastoma. Semin Nucl Med 2023; 53:517-529. [PMID: 36682980 DOI: 10.1053/j.semnuclmed.2022.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children and arises from anywhere along the sympathetic nervous system. It is a highly heterogeneous disease with a wide range of prognosis, from spontaneous regression or maturing to highly aggressive. About half of pediatric neuroblastoma patients develop the metastatic disease at diagnosis, which carries a poor prognosis. Nuclear medicine plays a pivotal role in the diagnosis, staging, response assessment, and long-term follow-up of neuroblastoma. And it has also played a prominent role in the treatment of neuroblastoma. Because the structure of metaiodobenzylguanidine (MIBG) is similar to that of norepinephrine, 90% of neuroblastomas are MIBG-avid. 123I-MIBG whole-body scintigraphy is the standard nuclear imaging technique for neuroblastoma, usually in combination with SPECT/CT. However, approximately 10% of neuroblastomas are MIBG nonavid. PET imaging has many technical advantages over SPECT imaging, such as higher spatial and temporal resolution, higher sensitivity, superior quantitative capability, and whole-body tomographic imaging. In recent years, various tracers have been used for imaging neuroblastoma with PET. The importance of patient-specific targeted radionuclide therapy for neuroblastoma therapy has also increased. 131I-MIBG therapy is part of the front-line treatment for children with high-risk neuroblastoma. And peptide receptor radionuclide therapy with radionuclide-labeled somatostatin analogues has been successfully used in the therapy of neuroblastoma. Moreover, radioimmunoimaging has important applications in the diagnosis of neuroblastoma, and radioimmunotherapy may provide a novel treatment modality against neuroblastoma. This review discusses the use of current and novel radiopharmaceuticals in nuclear medicine imaging and therapy of neuroblastoma.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siqi Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoran Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Samim A, Tytgat GA, Bleeker G, Wenker ST, Chatalic KL, Poot AJ, Tolboom N, van Noesel MM, Lam MG, de Keizer B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J Pers Med 2021; 11:jpm11040270. [PMID: 33916640 PMCID: PMC8066332 DOI: 10.3390/jpm11040270] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid malignancy in children. At diagnosis, approximately 50% of patients present with metastatic disease. These patients are at high risk for refractory or recurrent disease, which conveys a very poor prognosis. During the past decades, nuclear medicine has been essential for the staging and response assessment of neuroblastoma. Currently, the standard nuclear imaging technique is meta-[123I]iodobenzylguanidine ([123I]mIBG) whole-body scintigraphy, usually combined with single-photon emission computed tomography with computed tomography (SPECT-CT). Nevertheless, 10% of neuroblastomas are mIBG non-avid and [123I]mIBG imaging has relatively low spatial resolution, resulting in limited sensitivity for smaller lesions. More accurate methods to assess full disease extent are needed in order to optimize treatment strategies. Advances in nuclear medicine have led to the introduction of radiotracers compatible for positron emission tomography (PET) imaging in neuroblastoma, such as [124I]mIBG, [18F]mFBG, [18F]FDG, [68Ga]Ga-DOTA peptides, [18F]F-DOPA, and [11C]mHED. PET has multiple advantages over SPECT, including a superior resolution and whole-body tomographic range. This article reviews the use, characteristics, diagnostic accuracy, advantages, and limitations of current and new tracers for nuclear medicine imaging in neuroblastoma.
Collapse
Affiliation(s)
- Atia Samim
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Godelieve A.M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Gitta Bleeker
- Department of Radiology and Nuclear Medicine, Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands;
| | - Sylvia T.M. Wenker
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Kristell L.S. Chatalic
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Alex J. Poot
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Nelleke Tolboom
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Max M. van Noesel
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Marnix G.E.H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Bart de Keizer
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
- Correspondence: ; Tel.: +31-887-571-794
| |
Collapse
|