1
|
Burton JJN, Luke AJ, Pepling ME. Regulation of mouse primordial follicle formation by signaling through the PI3K pathway. Biol Reprod 2021; 106:515-525. [PMID: 34725674 DOI: 10.1093/biolre/ioab204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cell signaling mediated by the KIT receptor is critical for many aspects of oogenesis including the proliferation and migration of primordial germ cells, as well as the survival, growth, and maturation of ovarian follicles. We previously showed that KIT regulates cyst breakdown and primordial follicle formation, and in this study, have investigated the mechanisms downstream of the receptor by modulating the activity of two downstream signaling cascades: the phosphoinositide 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) pathways. E17.5 ovaries were cultured for five days with a daily dose of media supplemented with either the PI3K inhibitor LY294002, the MEK inhibitor U0126, or a DMSO vehicle control. Our histological observations aligned with the established role of PI3K in oocyte growth and primordial follicle activation but also revealed that LY294002 treatment delayed the processes of cyst breakdown and primordial follicle formation. U0126 treatment also led to a reduction in oocyte growth and follicle development but did not appear to affect cyst breakdown. The delay in cyst breakdown was mitigated when ovaries were dually dosed with LY294002 and KITL, suggesting that while KIT may signal through PI3K to promote cyst breakdown, other signaling networks downstream of the receptor could compensate. These observations unearth a role for PI3K signaling in the establishment of the ovarian reserve and suggest that PI3K might be the primary mediator of KIT-induced cyst breakdown and primordial follicle formation in the mouse ovary.
Collapse
Affiliation(s)
| | - Amanda J Luke
- Department of Biology, Syracuse University, Syracuse, New York
| | | |
Collapse
|
2
|
Effects of in vitro exposure of sheep ovarian tissue to zearalenone and matairesinol on preantral follicles. ZYGOTE 2021; 30:419-422. [PMID: 34689852 DOI: 10.1017/s0967199421000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to evaluate the effect of 1 µmol/l zearalenone (ZEN) and 1 µmol/l matairesinol (MAT), alone or in combination, on the morphology of in vitro-cultured ovarian preantral follicles. Ovaries from four adult sheep were collected at a local slaughterhouse and fragmented, and the ovarian pieces were submitted to in vitro culture for 3 days in the presence or absence of the test compounds. The morphology of primordial and primary follicles was impaired by ZEN. The plant lignan MAT alone did not maintain the morphology of the ovarian follicles; its combination with ZEN counteracted the negative effects observed when follicles were cultured in the presence of the mycotoxin alone. However, MAT was not able to promote the in vitro development of the ovarian follicles.
Collapse
|
3
|
In vitro exposure of sheep ovarian tissue to the xenoestrogens zearalenone and enterolactone: Effects on preantral follicles. Theriogenology 2021; 174:124-130. [PMID: 34428678 DOI: 10.1016/j.theriogenology.2021.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
The aim of this study was to evaluate the effect of 1 μmol/L zearalenone (ZEN) and 1 μmol/L enterolactone (ENL), alone or in combination, on the survival and morphology of in vitro cultured ovarian preantral follicles. Ovaries from 10 sheep were collected at a local abattoir and fragmented, and the ovarian pieces were submitted to in vitro culture for 3 days in the presence or absence of the test compounds. The morphology of primordial and primary follicles was impaired by ZEN, whereas that of cultured secondary follicles was improved by ENL. However, the combination of ENL with ZEN impaired the quality of primary and secondary follicles. Both ZEN and ENL induced apoptosis, but only ZEN was responsible for oocyte autophagy. None of these xenoestrogens affected endoplasmic reticulum stress as observed by the unaltered expression of ERP29. Differently from ZEN, ENL increased the expression of the efflux transporter ABCG2. In conclusion, although ENL can counteract the negative effects of ZEN on primordial and primary follicles, this positive effect is not similar to that observed in ovarian tissue cultures in the presence of ENL alone.
Collapse
|
4
|
Timóteo-Ferreira F, Abreu D, Mendes S, Matos L, Rodrigues A, Almeida H, Silva E. Redox imbalance in age-related ovarian dysfunction and perspectives for its prevention. Ageing Res Rev 2021; 68:101345. [PMID: 33894395 DOI: 10.1016/j.arr.2021.101345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The age at which women have their first child is increasing. This change represents a major health problem to society because advanced maternal age is related with a decay in fertility and an increase in the incidence of a variety of pregnancy complications and offspring health issues. The ovary stands as the main contributor for female reproductive ageing because of the progressive age-related decrease in follicle number and oocyte quality. Loss of redox homeostasis and establishment of an ovarian oxidative microenvironment are seen as major underlying causes for such downfall and impairment of ovarian function. Thus, the use of antioxidants to preserve fertility became an important field of research. In this review, new insights on mechanisms underlying the establishment of oxidative stress and its repercussions on ovarian ageing are addressed, along with the current state of knowledge on antioxidant supplementation and its contribution for healthy ageing and extension of ovarian lifespan.
Collapse
|
5
|
Abstract
Formation of primordial follicles occurs when germ cell nests break apart and individual oocytes become surrounded by pregranulosa cells. Why mammalian germ cells develop in germ cell nests is not fully understood but recent work has provided evidence that some oocytes serve as nurse cells supporting other oocytes in the cyst. Headway has also been made in understanding interactions that occur between cyst cells that must change as individual oocytes separate to associate with pregranulosa cells. As germ cell nests undergo breakdown some oocytes are lost by programmed cell death that has been attributed to apoptosis, but newer studies have implicated autophagy in counteracting apoptosis to promote cell survival and maintain the ovarian reserve. Work in the past few years has added to already known pathways regulating primordial follicle formation and has identified new players including signaling molecules, transcription factors and RNA binding proteins.
Collapse
|
6
|
Vallet N, Boissel N, Elefant E, Chevillon F, Pasquer H, Calvo C, Dhedin N, Poirot C. Can Some Anticancer Treatments Preserve the Ovarian Reserve? Oncologist 2021; 26:492-503. [PMID: 33458904 DOI: 10.1002/onco.13675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Preventing premature ovarian failure (POF) is a major challenge in oncology. With conventional regimens, cytotoxicity-associated POF involves primordial follicles (PF) pool depletion by apoptosis or overactivation mechanisms, notably mediated by the ABL/TAp63 and PI3K/Akt/mTOR pathways. New anticancer treatments have been designed to target pathways implicated in tumor growth. Although concerns regarding fertility arise with these targeted therapies, we hypothesized that targeted therapies may exert off-tumor effects on PF that might delay POF. We provide an overview of evidence concerning these off-tumor effects on PF. Limitations and future potential implications of these findings are discussed. DESIGN PubMed was searched by combining Boolean operators with the following keywords: fertility, ovarian, follicle, anti-tumoral, cancer, targeted, cytotoxic, and chemotherapy. RESULTS Cisplatin-related PF apoptosis via the ABL/TAp63 pathway was targeted with a tyrosine kinase inhibitor, imatinib, in mice, but effects were recently challenged by findings on human ovarian xenografts in mice. In cyclophosphamide-treated mice, PI3K/Akt/mTOR pathway inhibition with mTOR inhibitors and AS101 preserved the PF pool. Proteasome and GSK3 inhibitors were evaluated for direct and indirect follicle DNA damage prevention. Surprisingly, evidence for cytotoxic drug association with PF pool preservation was found. We also describe selected non-anticancer molecules that may minimize gonadotoxicity. CONCLUSION Not all anticancer treatments are associated with POF, particularly since the advent of targeted therapies. The feasibility of associating a protective drug targeting PF exhaustion mechanisms with cytotoxic treatments should be evaluated, as a way of decreasing the need for conventional fertility preservation techniques. Further evaluations are required for transfer into clinical practice. IMPLICATIONS FOR PRACTICE Anticancer therapies are associated with infertility in 10%-70% of patients, which is the result of primordial follicles pool depletion. Alone or associated with gonadotoxic treatments, some targeted therapies may exert favorable off-targets effects on the primordial follicle pool by slowing down their exhaustion. Current evidence of these effects relies on murine models or human in vitro models. Evaluation of these protective strategies in humans is challenging; however, if these results are confirmed with clinical and biological data, it not only could be a new approach to female fertility preservation but also would change standard fertility strategies.
Collapse
Affiliation(s)
- Nicolas Vallet
- Department of Hematology and Cellular Therapy, Tours University Hospital, Tours, France
| | - Nicolas Boissel
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.,Paris University, Paris, France
| | - Elisabeth Elefant
- Centre de Référence sur les Agents Tératogènes (CRAT), Armand Trousseau Hospital, AP-, HP, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Florian Chevillon
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France
| | - Hélène Pasquer
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France
| | - Charlotte Calvo
- Pediatric Hematology Department, Robert Debré Hospital, AP-, HP, Paris, France
| | - Nathalie Dhedin
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France
| | - Catherine Poirot
- Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| |
Collapse
|
7
|
Brito DCC, Domingues SFS, Rodrigues APR, Silva LM, Alves KA, Wu X, Francisco TS, Barroso Neto IL, Freire VN, Figueiredo JR, Pieczarka JC, Santos RR. Betaine-loaded CaCO 3 microparticles improve survival of vitrified feline preantral follicles through higher mitochondrial activity and decreased reactive oxygen species. Reprod Fertil Dev 2021; 32:531-537. [PMID: 32087765 DOI: 10.1071/rd19068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ovary fragments from six sexually mature cats were vitrified in the presence or absence of betaine or ascorbic acid, loaded (7.4 or 74µM betaine; 20 or 200µM ascorbic acid) or not (1mM betaine or 0.3mM ascorbic acid) into CaCO3 microparticles, and assessed for follicular morphology, oxidative stress and mitochondrial activity Feline ovarian tissue was successfully preserved after vitrification in the presence of 74µM betaine loaded in CaCO3 microparticles, as confirmed by morphological analysis and the density of preantral follicles and stromal cells, as well as by the increased mitochondrial activity and decreased production of reactive oxygen species.
Collapse
Affiliation(s)
- D C C Brito
- Laboratory of Cytogenetics, Center for Advanced Studies in Biodiversity, Biological Sciences Institute, Federal University of Pará, Av. Perimetral, 2-224 - Guamá, 66077-830, Belém-PA, Brazil; and Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Av. Perimetral, 2-224 - Guamá, 66077-830, Belém-PA, Brazil; and Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, Ceará State University, Av. Dr. Silas Munguba, 1700 - Itaperi, 60714-903, Fortaleza-CE, Brazil; and Corresponding author.
| | - S F S Domingues
- Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Av. Perimetral, 2-224 - Guamá, 66077-830, Belém-PA, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, Ceará State University, Av. Dr. Silas Munguba, 1700 - Itaperi, 60714-903, Fortaleza-CE, Brazil
| | - L M Silva
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, Ceará State University, Av. Dr. Silas Munguba, 1700 - Itaperi, 60714-903, Fortaleza-CE, Brazil
| | - K A Alves
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, Ceará State University, Av. Dr. Silas Munguba, 1700 - Itaperi, 60714-903, Fortaleza-CE, Brazil
| | - X Wu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA; and Department of Infectious Disease, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, PR China
| | - T S Francisco
- Department of Physics, Federal University of Ceará, Av. da Universidade, 2853 - Benfica, 60020-181, Fortaleza - CE, Brazil; and Department of Chemistry, State University of Vale do Acarau, Av. da Universidade, 850 - Jerônimo de Medeiros Prado, Sobral - CE, 62010-295, Brazil
| | - I L Barroso Neto
- Department of Physics, Federal University of Ceará, Av. da Universidade, 2853 - Benfica, 60020-181, Fortaleza - CE, Brazil
| | - V N Freire
- Department of Physics, Federal University of Ceará, Av. da Universidade, 2853 - Benfica, 60020-181, Fortaleza - CE, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, Ceará State University, Av. Dr. Silas Munguba, 1700 - Itaperi, 60714-903, Fortaleza-CE, Brazil
| | - J C Pieczarka
- Laboratory of Cytogenetics, Center for Advanced Studies in Biodiversity, Biological Sciences Institute, Federal University of Pará, Av. Perimetral, 2-224 - Guamá, 66077-830, Belém-PA, Brazil
| | - R R Santos
- Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Av. Perimetral, 2-224 - Guamá, 66077-830, Belém-PA, Brazil
| |
Collapse
|
8
|
Liao Q, Feng X, Li X, Chen G, Chen J, Yang B, Li K, Ai J. Lapatinib‑induced inhibition of ovarian function is counteracted by the STAT3 pathway both in vivo and in vitro. Oncol Rep 2020; 44:1127-1135. [PMID: 32582968 PMCID: PMC7388577 DOI: 10.3892/or.2020.7660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
The present study was designed to ascertain whether lapatinib, a tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR), affects ovarian reserve and fertility potential in a mouse model. Female C57BL/6 mice were treated with either vehicle or lapatinib (100 or 200 mg/kg/day orally) for 4 weeks, after which body weight, vaginal smears, follicle numbers, serum anti‑Müllerian hormone (AMH) levels and mating outcomes were analyzed to assess the ovarian reserve and reproductive function. Slices from the ovaries of 4‑week‑old mice were cultured with lapatinib (0, 5 or 10 µM) for 24 and 48 h, and protein expression levels were assessed to validate the changes in signaling pathways. The results indicated that mice treated with 200 mg/kg lapatinib showed a slight decrease in body weight compared to those treated with vehicle or 100 mg/kg lapatinib. There was no statistical difference in estrous cyclicity among the three groups. No significant difference was observed in follicle numbers, AMH levels, histological morphologies of the ovaries or mating outcomes in the three groups of mice. Western blotting and immunohistochemical staining of the EGF receptor and its main downstream signaling pathways showed decreased phosphorylation of EGFR and mitogen‑activated protein kinase (MAPK)3/1 and increased phosphorylation of signal transducers and activators of transcription (STAT)3 in the lapatinib‑treated groups compared to the control group. Our study suggests that lapatinib has little effect on ovarian reserve and reproductive function in a mouse model. This lack of effect of lapatinib on ovarian function may be due to the activation of the STAT3 signaling pathway that counteracts the inhibitory effects of lapatinib on EGF receptors.
Collapse
Affiliation(s)
- Qiuyue Liao
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xue Feng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xi Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ge Chen
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Chen
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bin Yang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kezhen Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jihui Ai
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
9
|
Equol: A Microbiota Metabolite Able to Alleviate the Negative Effects of Zearalenone during In Vitro Culture of Ovine Preantral Follicles. Toxins (Basel) 2019; 11:toxins11110652. [PMID: 31717534 PMCID: PMC6891317 DOI: 10.3390/toxins11110652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
The impact of zearalenone (ZEN) on female reproduction remains an issue, since its effects may differ among exposed cell types. Besides the use of decontaminants in animal diet, other approaches should be considered to minimise ZEN effects after exposure. Since the first organ in contact with ZEN is the gastrointestinal tract, we hypothesise that products of microbiota metabolism may play a role in ZEN detoxification. We aimed to evaluate the effect of 1 µmol/L ZEN and 1 µmol/L equol (a microbial metabolite), alone or in combination, on the survival and morphology of in vitro cultured ovarian preantral follicles. Ovaries from 12 sheep were collected at a local abattoir and fragmented, and the ovarian pieces were submitted to in vitro culture for three days in the presence or absence of the test compounds. The follicular morphology was impaired by ZEN, but equol could alleviate the observed degeneration rates. While ZEN decreased cell proliferation in primary and secondary follicles, as well as induced DNA double-strand breaks in primordial follicles, all these observations disappeared when equol was added to a culture medium containing ZEN. In the present culture conditions, equol was able to counteract the negative effects of ZEN on ovarian preantral follicles.
Collapse
|
10
|
Imatinib mesylate effects on zebrafish reproductive success: Gonadal development, gamete quality, fertility, embryo-larvae viability and development, and related genes. Toxicol Appl Pharmacol 2019; 379:114645. [PMID: 31278918 DOI: 10.1016/j.taap.2019.114645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
Imatinib (IM) is a tyrosine kinase (TK) inhibitor (TKI) used to treat chronic myeloid leukemia. Clinical case reports and a few laboratory mammal studies provide inconclusive evidence about its deleterious effects on reproduction. The aim of the current study was to evaluate the potential of zebrafish to characterize IM-induced effects on reproduction and clarify IM effects on reproductive success. To this end, we exposed adult zebrafish to four concentrations of IM for 30 days followed by a 30-day depuration period. IM exposure caused a concentration-dependent, irreversible, suppression of folliculogenesis, reversible decrease in sperm density and motility, decreased fecundity and fertility, but no significant change in atretic follicle abundance. We also observed IM-induced premature hatching, but no significant change in embryo-larvae survivability. However, we found significant IM-induced morphometric malformations. IM decreased expression of vegfaa and igf2a (two reproductive-, angiogenic-, and growth-related genes) in testes and ovaries. The results demonstrate IM can induce significant changes in critical reproductive endpoints and zebrafish as a suitable model organism to show effects of IM on reproduction. The findings suggest that TKI effects on reproductive success should be considered.
Collapse
|
11
|
Imatinib mesylate does not counteract ovarian tissue fibrosis in postnatal rat ovary. Reprod Biol 2019; 19:133-138. [PMID: 31080158 DOI: 10.1016/j.repbio.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Chemotherapy may result in ovarian atrophy, a depletion of the primordial follicle pool, diminished ovarian weight, cortical and stromal fibrosis. Imatinib mesylate is an anticancer agent that inhibits competitively several receptor tyrosine kinases (RTKs). RTKs play important roles in cell metabolism, proliferation, and apoptosis. In clinic, imatinib mesylate is also known as an anti-fibrotic medicine. In the present study, the impact of imatinib on the ovarian tissue was investigated by assessing ovarian tissue fibrosis in postnatal rat administered with or without imatinib for three days. Fibrosis in the ovarian tissue was determined by histology (Picrosirius and Masson's trichrome staining) and the protein expression of vimentin and alpha-smooth muscle actin (α-SMA). Furthermore, mRNA expression of Forkhead box transcription factor O1 and O3 (FOXO1 and FOXO3), which are markers of cell proliferation was quantified. A short-term exposure to imatinib showed to increase tissue fibrosis in ovaries. This was observed by Masson's trichrome staining. Exposure to imatinib led also to a down-regulation of vimentin protein expression and up-regulation mRNA expression of FOXO3. This may indicate a role of FOXO3 in ovarian tissue fibrosis in postnatal rat ovaries.
Collapse
|
12
|
Zheng L, Luo R, Su T, Hu L, Gao F, Zhang X. Differentially Expressed lncRNAs After the Activation of Primordial Follicles in Mouse. Reprod Sci 2018; 26:1094-1104. [PMID: 30376771 DOI: 10.1177/1933719118805869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The activation of primordial follicles is critical to ovarian follicle development, which directly influences female fertility and reproductive life span. Several studies have suggested a role for long noncoding RNAs (lncRNAs) in ovarian function. However, the precise involvement of lncRNAs in the initiation of primordial follicles is still unknown. Here, an in vitro culture model was used to investigate the roles of lncRNAs in primordial follicle activation. We found that primordial follicles in day 3 mouse ovaries were activated after culturing for 8 days in vitro, as indicated by ovarian morphology changes, increases in primary follicle number, and downregulation of mammalian Sterile 20-like kinase messenger RNA (mRNA) and upregulation of growth differentiation factor 9 mRNA. We next examined lncRNA expression profiles by RNA sequencing at the transcriptome level and found that among 60 078 lncRNAs, 6541 lncRNA were upregulated and 2135 lncRNA were downregulated in 3-day ovaries cultured for 8 days in vitro compared with ovaries from day 3 mice. We also found that 4171 mRNAs were upregulated and 1795 were downregulated in the cultured ovaries. Gene ontology and pathway analyses showed that the functions of differentially expressed lncRNA targets and mRNAs were closely linked with many processes and pathways related to ovary development, including cell proliferation and differentiation, developmental processes, and other signaling transduction pathways. Additionally, many novel identified lncRNAs showed inducible expression, suggesting that these lncRNAs may be good candidates for investigating mouse primordial follicle activation. This study provides a foundation for further exploring lncRNA-related mechanisms in the initiation of mouse primordial follicles.
Collapse
Affiliation(s)
- Liping Zheng
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Ruichen Luo
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Tie Su
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Liaoliao Hu
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Fengxin Gao
- 3 Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Xiaoning Zhang
- 2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China.,3 Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Sominsky L, Goularte JF, Andrews ZB, Spencer SJ. Acylated Ghrelin Supports the Ovarian Transcriptome and Follicles in the Mouse: Implications for Fertility. Front Endocrinol (Lausanne) 2018; 9:815. [PMID: 30697193 PMCID: PMC6340924 DOI: 10.3389/fendo.2018.00815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Ghrelin, an orexigenic gut-derived peptide, is gaining increasing attention due to its multifaceted role in a number of physiological functions, including reproduction. Ghrelin exists in circulation primarily as des-acylated and acylated ghrelin. Des-acyl ghrelin, until recently considered to be an inactive form of ghrelin, is now known to have independent physiological functionality. However, the relative contribution of acyl and des-acyl ghrelin to reproductive development and function is currently unknown. Here we used ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no measurable levels of endogenous acyl ghrelin and chronically high levels of des-acyl ghrelin, to characterize how the developmental and life-long absence of acyl ghrelin affects ovarian development and reproductive capacity. We combined the assessment of markers of reproductive maturity and the capacity to breed with measures of ovarian morphometry, as well as with ovarian RNA sequencing analysis. Our data show that while GOAT KO mice retain the capacity to breed in young adulthood, there is a diminished number of ovarian follicles (per mm3) in the juvenile and adult ovaries, due to a significant reduction in the number of small follicles, particularly the primordial follicles. We also show pronounced specific changes in the ovarian transcriptome in the juvenile GOAT KO ovary, indicative of a potential for premature ovarian development. Collectively, these findings indicate that an absence of acyl ghrelin does not prevent reproductive success but that appropriate levels of acyl and des-acyl ghrelin may be necessary for optimal ovarian maturation.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Luba Sominsky
| | - Jeferson F. Goularte
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Zane B. Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|