1
|
Liu S, Wu J, Zhao X, Yu M, Taniguchi M, Bao H, Kang K. Recent Progress of Induced Spermatogenesis In Vitro. Int J Mol Sci 2024; 25:8524. [PMID: 39126092 PMCID: PMC11313507 DOI: 10.3390/ijms25158524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Sperm, a crucial gamete for reproduction in sexual reproduction, is generated through the proliferation, differentiation, and morphological transformations of spermatogonial stem cells within the specialized microenvironment of the testes. Replicating this environment artificially presents challenges. However, interdisciplinary advancements in physics, materials science, and cell engineering have facilitated the utilization of innovative materials, technologies, and structures for inducing in vitro sperm production. This article offers a comprehensive overview of research progress on inducing in vitro sperm production by categorizing techniques into two major systems based on matrix-based and non-matrix-based approaches, respectively. Detailed discussions are provided for both types of technology systems through comparisons of their similarities and differences, as well as research advancements. The aim is to provide researchers in this field with a comprehensive panoramic view while presenting our own perspectives and prospects.
Collapse
Affiliation(s)
- Siqi Liu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Jiang Wu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Masayasu Taniguchi
- Department of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-0841, Japan
| | - Huimingda Bao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Kai Kang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| |
Collapse
|
2
|
Rahbar M, Asadpour R, Mazaheri Z. The effect of epididymosomes on the development of frozen-thawed mouse spermatogonial stem cells after culture in a decellularized testicular scaffold and transplantation into azoospermic mice. J Assist Reprod Genet 2024; 41:2079-2098. [PMID: 38839698 PMCID: PMC11339233 DOI: 10.1007/s10815-024-03157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study examined SSC proliferation on an epididymosome-enriched decellularized testicular matrix (DTM) hydrogel and spermatogenesis induction in azoospermic mice. METHODS Epididymosomes were extracted and characterized using SEM and western blotting. After cryopreservation, thawed SSCs were cultured in a hydrogel-based three-dimensional (3D) culture containing 10 ng/mL GDNF or 20 µg/mL epididymosomes. SSCs were assessed using the MTT assay, flow cytometry, and qRT-PCR after two weeks of culture. The isolated SSCs were microinjected into the efferent ducts of busulfan-treated mice. DiI-labeled SSCs were followed, and cell homing was assessed after two weeks. After 8 weeks, the testes were evaluated using morphometric studies and immunohistochemistry. RESULTS The expression of PLZF, TGF-β, and miR-10b did not increase statistically significantly in the 3D + GDNF and 3D + epididymosome groups compared to the 3D group. Among the groups, the GDNF-treated group exhibited the highest expression of miR-21 (*P < 0.05). Caspase-3 expression was lower in the epididymosome-treated group than in the other groups (***P < 0.001). Compared to the 3D and negative control groups, the 3D + epididymosomes and 3D + GDNF groups showed an increase in spermatogenic cells. Immunohistochemical results confirmed the growth and differentiation of spermatogonial cells into spermatids in the treatment groups. CONCLUSION The DTM hydrogel containing 20 µg/mL epididymosomes or 10 ng/mL GDNF is a novel and safe culture system that can support SSC proliferation in vitro to obtain adequate SSCs for transplantation success. It could be a novel therapeutic agent that could recover deregulated SSCs in azoospermic patients.
Collapse
Affiliation(s)
- Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
3
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Wu J, Kang K, Liu S, Ma Y, Yu M, Zhao X. Recent Progress of In Vitro 3D Culture of Male Germ Stem Cells. J Funct Biomater 2023; 14:543. [PMID: 37998112 PMCID: PMC10672244 DOI: 10.3390/jfb14110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Male germline stem cells (mGSCs), also known as spermatogonial stem cells (SSCs), are the fundamental seed cells of male animal reproductive physiology. However, environmental influences, drugs, and harmful substances often pose challenges to SSCs, such as population reduction and quality decline. With advancements in bioengineering technology and biomaterial technology, an increasing number of novel cell culture methods and techniques have been employed for studying the proliferation and differentiation of SSCs in vitro. This paper provides a review on recent progress in 3D culture techniques for SSCs in vitro; we summarize the microenvironment of SSCs and spermatocyte development, with a focus on scaffold-based culture methods and 3D printing cell culture techniques for SSCs. Additionally, decellularized testicular matrix (DTM) and other biological substrates are utilized through various combinations and approaches to construct an in vitro culture microenvironment suitable for SSC growth. Finally, we present some perspectives on current research trends and potential opportunities within three areas: the 3D printing niche environment, alternative options to DTM utilization, and advancement of the in vitro SSC culture technology system.
Collapse
Affiliation(s)
- Jiang Wu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Kai Kang
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Siqi Liu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Yaodan Ma
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
5
|
Tang S, Jones C, Dye J, Coward K. Dissociation, enrichment, and the in vitro formation of gonocyte colonies from cryopreserved neonatal bovine testicular tissues. Theriogenology 2023; 210:143-153. [PMID: 37499372 DOI: 10.1016/j.theriogenology.2023.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Gonocytes play an important role in early development of spermatogonial stem cells and fertility preservation to acquire more high quality gonocytes in vitro for further germ cell-related research and applications, it is necessarily needed to enrich and in vitro propagate gonocytes from cryopreserved bovine testicular tissues. This study aimed to investigate the isolation, enrichment, and colony formation of gonocytes in vitro for germ cell expansion from cryopreserved neonatal bovine testicular tissues. The effects of several different in vitro culture conditions, including seeding density, temperature, serum replacement and extracellular matrices were investigated for the maintenance, proliferation and formation of gonocyte colonies in vitro. Frozen/thawed two-week-old neonatal bovine testicular tissues were digested and gonocytes were enriched using a Percoll density gradient. Cell viability was accessed by trypan blue staining and cell apoptosis was evaluated by TUNEL assays. Gonocytes were identified and confirmed by immunofluorescence with the PGP9.5 germ cell marker and the OCT4 pluripotency marker while Sertoli cells were stained with vimentin. We found that neonatal bovine gonocytes were efficiently enriched by a 30%-40% Percoll density gradient (p < 0.05). No significant differences were detected between neonatal bovine testicular cells cultured at 34 °C or 37 °C. The formation of gonocyte colonies was observed in culture medium supplemented with knockout serum replacement (KSR), but not fetal bovine serum (FBS), at a seeding density higher than 5.0 × 104 cells/well. A greater number of gonocyte colonies were observed in culture plates coated with laminin (38.00 ± 6.24/well) and Matrigel (38.67 ± 3.78/well) when compared to plates coated with collagen IV and fibronectin (p < 0.05). In conclusion, bovine neonatal gonocytes were able to be efficiently isolated, enriched and maintained in gonocyte colonies in vitro; the development of this protocol provides vital information for the clinical translation of this technology and the future restoration of human fertility.
Collapse
Affiliation(s)
- Shiyan Tang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Julian Dye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
6
|
Salem M, Khadivi F, Javanbakht P, Mojaverrostami S, Abbasi M, Feizollahi N, Abbasi Y, Heidarian E, Rezaei Yazdi F. Advances of three-dimensional (3D) culture systems for in vitro spermatogenesis. Stem Cell Res Ther 2023; 14:262. [PMID: 37735437 PMCID: PMC10512562 DOI: 10.1186/s13287-023-03466-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
The loss of germ cells and spermatogenic failure in non-obstructive azoospermia are believed to be the main causes of male infertility. Laboratory studies have used in vitro testicular models and different 3-dimensional (3D) culture systems for preservation, proliferation and differentiation of spermatogonial stem cells (SSCs) in recent decades. The establishment of testis-like structures would facilitate the study of drug and toxicity screening, pathological mechanisms and in vitro differentiation of SSCs which resulted in possible treatment of male infertility. The different culture systems using cellular aggregation with self-assembling capability, the use of different natural and synthetic biomaterials and various methods for scaffold fabrication provided a suitable 3D niche for testicular cells development. Recently, 3D culture models have noticeably used in research for their architectural and functional similarities to native microenvironment. In this review article, we briefly investigated the recent 3D culture systems that provided a suitable platform for male fertility preservation through organ culture of testis fragments, proliferation and differentiation of SSCs.
Collapse
Affiliation(s)
- Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farnaz Khadivi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Yasaman Abbasi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Heidarian
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farzane Rezaei Yazdi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
7
|
Bashiri Z, Moghaddaszadeh A, Falak R, Khadivi F, Afzali A, Abbasi M, Sharifi AM, Asgari HR, Ghanbari F, Koruji M. Generation of Haploid Spermatids on Silk Fibroin-Alginate-Laminin-Based Porous 3D Scaffolds. Macromol Biosci 2023; 23:e2200574. [PMID: 37116215 DOI: 10.1002/mabi.202200574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Indexed: 04/30/2023]
Abstract
In vitro production of sperm is a desirable idea for fertility preservation in azoospermic men and prepubertal boys suffering from cancer. In this study, a biocompatible porous scaffold based on a triad mixture of silk fibroin (SF), alginate (Alg), and laminin (LM) is developed to facilitate the differentiation of mouse spermatogonia stem cells (SSCs). Following SF extraction, the content is analyzed by SDS-PAGE and stable porous 3D scaffolds are successfully prepared by merely Alg, SF, and a combination of Alg-SF, or Alg-SF-LM through freeze-drying. Then, the biomimetic scaffolds are characterized regarding the structural and biological properties, water absorption capacity, biocompatibility, biodegradability, and mechanical behavior. Neonatal mice testicular cells are seeded on three-dimensional scaffolds and their differentiation efficiency is evaluated using real-time PCR, flow cytometry, immunohistochemistry. Blend matrices showed uniform porous microstructures with interconnected networks, which maintained long-term stability and mechanical properties better than homogenous structures. Molecular analysis of the cells after 21 days of culture showed that the expression of differentiation-related proteins in cells that are developed in composite scaffolds is significantly higher than in other groups. The application of a composite system can lead to the differentiation of SSCs, paving the way for a novel infertility treatment landscape in the future.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Omid Fertility & Infertility Clinic, Hamedan, 6516796198, Iran
| | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Reza Falak
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Azita Afzali
- Hajar hospital, Shahrekord University of Medical Sciences, Shahrekord, 8816854633, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Ali Mohammad Sharifi
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hamid Reza Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Farid Ghanbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
8
|
Hau RK, Wright SH, Cherrington NJ. In Vitro and In Vivo Models for Drug Transport Across the Blood-Testis Barrier. Drug Metab Dispos 2023; 51:1157-1168. [PMID: 37258305 PMCID: PMC10449102 DOI: 10.1124/dmd.123.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
9
|
Haider S, Beristain AG. Human organoid systems in modeling reproductive tissue development, function, and disease. Hum Reprod 2023:7147082. [PMID: 37119533 DOI: 10.1093/humrep/dead085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
Research focused on human reproductive biology has primarily relied upon clinical samples affording mainly descriptive studies with limited implementation of functional or mechanistic understanding. More importantly, restricted access to human embryonic material has necessitated the use of animals, primarily rats and mice, and short-term primary cell cultures derived from human patient material. While reproductive developmental processes are generally conserved across mammals, specific features unique to human reproduction have resulted in the development of human-based in vitro systems designed to retain or recapitulate key molecular and cellular processes important in humans. Of note, major advances in 3D epithelial stem cell-based systems modeling human reproductive organ development have been made. These cultures, broadly referred to as organoids, enable research aimed at understanding cellular hierarchies and processes controlling cellular differentiation and function. Moreover, organoids allow the pre-clinical testing of pharmacological substances, both from safety and efficacy standpoints, and hold large potential in driving aspects of personalized medicine that were previously not possible with traditional models. In this mini-review, we focus on summarizing the current state of regenerative organoid culture systems of the female and male reproductive tracts that model organ development, maintenance, and function. Specifically, we will introduce stem cell-based organoid models of the ovary/fallopian tube, endometrium, cervix, prostate gland, and testes. We will also describe organoid systems of the pre-implanting blastocyst and trophoblast, as the blastocyst and its extraembryonic trophectoderm are central to fetal, maternal, and overall pregnancy health. We describe the foundational studies leading to their development and outline the utility as well as specific limitations that are unique and common to many of these in vitro platforms.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna, Austria
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Horvath-Pereira BDO, Almeida GHDR, da Silva Júnior LN, do Nascimento PG, Horvath Pereira BDO, Fireman JVBT, Pereira MLDRF, Carreira ACO, Miglino MA. Biomaterials for Testicular Bioengineering: How far have we come and where do we have to go? Front Endocrinol (Lausanne) 2023; 14:1085872. [PMID: 37008920 PMCID: PMC10060902 DOI: 10.3389/fendo.2023.1085872] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Traditional therapeutic interventions aim to restore male fertile potential or preserve sperm viability in severe cases, such as semen cryopreservation, testicular tissue, germ cell transplantation and testicular graft. However, these techniques demonstrate several methodological, clinical, and biological limitations, that impact in their results. In this scenario, reproductive medicine has sought biotechnological alternatives applied for infertility treatment, or to improve gamete preservation and thus increase reproductive rates in vitro and in vivo. One of the main approaches employed is the biomimetic testicular tissue reconstruction, which uses tissue-engineering principles and methodologies. This strategy pursues to mimic the testicular microenvironment, simulating physiological conditions. Such approach allows male gametes maintenance in culture or produce viable grafts that can be transplanted and restore reproductive functions. In this context, the application of several biomaterials have been proposed to be used in artificial biological systems. From synthetic polymers to decellularized matrixes, each biomaterial has advantages and disadvantages regarding its application in cell culture and tissue reconstruction. Therefore, the present review aims to list the progress that has been made and the continued challenges facing testicular regenerative medicine and the preservation of male reproductive capacity, based on the development of tissue bioengineering approaches for testicular tissue microenvironment reconstruction.
Collapse
Affiliation(s)
| | | | | | - Pedro Gabriel do Nascimento
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Jabari A, Gholami K, Khadivi F, Koruji M, Amidi F, Gilani MAS, Mahabadi VP, Nikmahzar A, Salem M, Movassagh SA, Feizollahi N, Abbasi M. In vitro complete differentiation of human spermatogonial stem cells to morphologic spermatozoa using a hybrid hydrogel of agarose and laminin. Int J Biol Macromol 2023; 235:123801. [PMID: 36842740 DOI: 10.1016/j.ijbiomac.2023.123801] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Spermatogenesis refers to the differentiation of the spermatogonial stem cells (SSCs) located in the base seminiferous tubules into haploid spermatozoa. Prerequisites for in vitro spermatogenesis include an extracellular matrix (ECM), paracrine factors, and testicular somatic cells which play a supporting role for SSCs. Thus, the present study evaluated the potential of co-culturing Sertoli cells and SSCs embedded in a hybrid hydrogel of agarose and laminin, the main components of the ECM. Following the three-week conventional culture of human testicular cells, the cells were cultured in agarose hydrogel or agarose/laminin one (hybrid) for 74 days. Then, immunocytochemistry, real-time PCR, electron microscopy, and morphological staining methods were applied to analyze the presence of SSCs, as well as the other cells of the different stages of spermatogenesis. Based on the results, the colonies with positive spermatogenesis markers were observed in both culture systems. The existence of the cells of all three phases of spermatogenesis (spermatogonia, meiosis, and spermiogenesis) was confirmed in the two groups, while morphological spermatozoa were detected only in the hybrid hydrogel group. Finally, a biologically improved 3D matrix can support all the physiological activities of SSCs such as survival, proliferation, and differentiation.
Collapse
Affiliation(s)
- Ayob Jabari
- Department of Obstetrics and Gynecology, Molud Infertility Center, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Aydos OS, Yukselten Y, Ozkan T, Ozkavukcu S, Tuten Erdogan M, Sunguroglu A, Aydos K. Co-Culture of Cryopreserved Healthy Sertoli Cells with Testicular Tissue of Non-Obstructive Azoospermia (NOA) Patients in Culture Media Containing Follicle-Stimulating Hormone (FSH)/Testosterone Has No Advantage in Germ Cell Maturation. J Clin Med 2023; 12:jcm12031073. [PMID: 36769720 PMCID: PMC9917953 DOI: 10.3390/jcm12031073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Different cell culture conditions and techniques have been used to mature spermatogenic cells to increase the success of in vitro fertilization. Sertoli cells (SCs) are essential in maintaining spermatogenesis and FSH stimulation exerts its effect through direct or indirect actions on SCs. The effectiveness of FSH and testosterone added to the co-culture has been demonstrated in other studies to provide microenvironment conditions of the testicular niche and to contribute to the maturation and meiotic progression of spermatogonial stem cells (SSCs). In the present study, we investigated whether co-culture of healthy SCs with the patient's testicular tissue in the medium supplemented with FSH/testosterone provides an advantage in the differentiation and maturation of germ cells in NOA cases (N = 34). In men with obstructive azoospermia (N = 12), healthy SCs from testicular biopsies were identified and purified, then cryopreserved. The characterization of healthy SCs was done by flow cytometry (FC) and immunohistochemistry using antibodies specific for GATA4 and vimentin. FITC-conjugated annexin V/PI staining and the MTT assay were performed to compare the viability and proliferation of SCs before and after freezing. In annexin V staining, no difference was found in percentages of live and apoptotic SCs, and MTT showed that cryopreservation did not inhibit SC proliferation compared to the pre-freezing state. Then, tissue samples from NOA patients were processed in two separate environments containing FSH/testosterone and FSH/testosterone plus co-culture with thawed healthy SCs for 7 days. FC was used to measure 7th-day levels of specific markers expressed in spermatogonia (VASA), meiotic cells (CREM), and post-meiotic cells (protamine-2 and acrosin). VASA and acrosin basal levels were found to be lower in infertile patients compared to the OA group (8.2% vs. 30.6% and 12.8% vs. 30.5%, respectively; p < 0.05). Compared to pre-treatment measurements, on the 7th day in the FSH/testosterone environment, CREM levels increased by 58.8% and acrosin levels increased by 195.5% (p < 0.05). Similarly, in medium co-culture with healthy SCs, by day 7, CREM and acrosin levels increased to 92.2% and 204.8%, respectively (p < 0.05). Although VASA and protamine levels increased in both groups, they did not reach a significant level. No significant difference was found between the day 7 increase rates of CREM, VASA, acrosin and protamine-2 in either FSH/testosterone-containing medium or in medium additionally co-cultured with healthy SCs (58.8% vs. 92.2%, 120.6% vs. 79.4%, 195.5% vs. 204.8%, and 232.3% vs. 198.4%, respectively; p > 0.05). Our results suggest that the presence of the patient's own SCs for maturation of germ cells in the culture medium supplemented with FSH and testosterone is sufficient, and co-culture with healthy SCs does not have an additional advantage. In addition, the freezing-thawing process would not impair the viability and proliferation of SCs.
Collapse
Affiliation(s)
- O. Sena Aydos
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
- Correspondence: (O.S.A.); (Y.Y.); Tel.: +90-3125958050 (O.S.A.)
| | - Yunus Yukselten
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520, USA
- Correspondence: (O.S.A.); (Y.Y.); Tel.: +90-3125958050 (O.S.A.)
| | - Tulin Ozkan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Sinan Ozkavukcu
- Center for Assisted Reproduction, School of Medicine, Ankara University, Ankara 06230, Turkey
- Postgraduate Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Meltem Tuten Erdogan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Kaan Aydos
- Department of Urology, School of Medicine, Ankara University, Ankara 06230, Turkey
| |
Collapse
|
13
|
Segunda MN, Díaz C, Torres CG, Parraguez VH, De los Reyes M, Peralta OA. Comparative Analysis of the Potential for Germ Cell (GC) Differentiation of Bovine Peripheral Blood Derived-Mesenchymal Stem Cells (PB-MSC) and Spermatogonial Stem Cells (SSC) in Co-Culture System with Sertoli Cells (SC). Animals (Basel) 2023; 13:ani13020318. [PMID: 36670859 PMCID: PMC9854759 DOI: 10.3390/ani13020318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023] Open
Abstract
Although spermatogonial stem cells (SSC) constitute primary candidates for in vitro germ cell (GC) derivation, they are scarce and difficult to maintain in an undifferentiated state. Alternatively, mesenchymal stem cells (MSC) are also candidates for GC derivation due to their simplicity for culture and multipotential for transdifferentiation. The aim of the present study was to compare the GC differentiation potentials of bull peripheral blood-derived MSC (PB-MSC) and SSC using an in vitro 3D co-culture system with Sertoli cells (SC). Samples of PB-MSC or SSC co-cultures with SC were collected on days 0, 7, 14 and 21 and analyzed for pluripotency, GC and mesenchymal marker expression. Co-culture of PB-MSC+SC resulted in down-regulation of NANOG and up-regulation of OCT4 at day 7. In comparison, co-culture of SSC+SC resulted in consistent expression of NANOG, OCT4 and SOX2 at day 14. During co-culture, SSC+SC increased the expression of DAZL, PIWIL2, FRAGILIS and STELLA and activated the expression of STRA8, whereas co-culture of PB-MSC+SC only increased the expression of DAZL and PIWIL2. Thus, co-culture of bull PB-MSC+SC and SSC+SC in 3D SACS results in differential expression of pluripotency and GC markers, where bull SSC display a more robust GC differentiation profile compared to PB-MSC.
Collapse
Affiliation(s)
- Moisés N. Segunda
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, Santiago 8820808, Chile
- Faculdade de Medicina Veterinária, Universidade José Eduardo dos Santos, Bairro Santo António-Avenida Nuno Alvarez, Huambo 555, Angola
| | - Carlos Díaz
- Doctorate Program in Sciences, UNED, Bravo Murillo 38, 28015 Madrid, Spain
| | - Cristian G. Torres
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Víctor H. Parraguez
- Department of Biological Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Mónica De los Reyes
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Oscar A. Peralta
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
- Correspondence:
| |
Collapse
|
14
|
Rahbar M, Asadpour R, Azami M, Mazaheri Z, Hamali H. Improving the process of spermatogenesis in azoospermic mice using spermatogonial stem cells co-cultured with epididymosomes in three-dimensional culture system. Life Sci 2022; 310:121057. [DOI: 10.1016/j.lfs.2022.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
|
15
|
Bashiri Z, Gholipourmalekabadi M, Falak R, Amiri I, Asgari H, Chauhan NPS, Koruji M. In vitro production of mouse morphological sperm in artificial testis bioengineered by 3D printing of extracellular matrix. Int J Biol Macromol 2022; 217:824-841. [PMID: 35905760 DOI: 10.1016/j.ijbiomac.2022.07.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Since autologous stem cell transplantation is prone to cancer recurrence, in vitro sperm production is regarded a safer approach to fertility preservation. In this study, the spermatogenesis process on testicular tissue extracellular matrix (T-ECM)-derived printing structure was evaluated. Ram testicular tissue was decellularized using a hypertonic solution containing triton and the extracted ECM was used as a bio-ink to print an artificial testis. Following cell adhesion and viability examination, pre-meiotic and post-meiotic cells in the study groups (as testicular suspension and co-culture with Sertoli cells) were confirmed by real-time PCR, flow-cytometry and immunocytochemistry methods. Morphology of differentiated cells was evaluated using transmission electron microscopy (TEM), toluidine blue, Giemsa, and hematoxylin and eosin (H&E) staining. The functionality of Leydig and Sertoli cells was determined by their ability for hormone secretion. The decellularization of testicular tissue fragments was successful and had efficiently removed the cellular debris and preserved the ECM compounds. High cell viability, colonization, and increased expression of pre-meiotic markers in cultured testicular cells on T-ECM-enriched scaffolds confirmed their proliferation. Furthermore, the inoculation of neonatal mouse testicular cells onto T-ECM-enriched scaffolds resulted in the generation of sperm. Morphology evaluation showed that the structure of these cells was quite similar to mature sperm with a specialized tail structure. The hormonal analysis also confirmed production and secretion of testosterone and inhibin B by Leydig and Sertoli cells. T-ECM printed artificial testis is a future milestone that promises for enhancing germ cell maintenance and differentiation, toxicology studies, and fertility restoration to pave the way for new human infertility treatments in the future.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Amiri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Endometrium and Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Bashiri Z, Zahiri M, Allahyari H, Esmaeilzade B. Proliferation of human spermatogonial stem cells on optimized PCL/Gelatin nanofibrous scaffolds. Andrologia 2022; 54:e14380. [PMID: 35083770 DOI: 10.1111/and.14380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
Improvement of culture system and increasing the proliferation of spermatogonia stem cells under in vitro condition are the essential treatment options for infertility before autologous transplantation. Therefore, the present study aimed to evaluate the proliferation of human spermatogonia stem cells on the electrospun polycaprolactone/gelatin nanocomposite. Therefore, for this purpose, nanofiber porous scaffolds were prepared using the electrospinning method and their structures were then confirmed by SEM. After performing swelling, biodegradability and cell adhesion tests, human spermatogonia stem cells were cultured on scaffolds. In addition, both cell viability and proliferation were assessed using immunocytochemistry, flow cytometry and real-time PCR techniques in culturing during a 3-week period. SEM images indicated the presence of fibres with suitable diameters and arrangement as well as a sufficient porosity in nanocomposite scaffolds, showing good biocompatibility and biodegradability. The results show a significant increase in the number of spermatogonia stem cells in the cultured group on scaffold compared with the control group (p ≤ 0.05). As well, the results show that the expressions of integrin ɑ6 and β1 and Plzf genes estimated using real-time PCR in nanofiber scaffolds were significantly higher than those of the control group (p ≤ 0.05). However, the expression of c-Kit gene in the 3D group showed a significant decrease compared with the 2D group. Flow cytometry analysis also showed that the number of Plzf-positive cells was significantly higher in nanofiber porous scaffolds compared with the control group (p ≤ 0.05). Additionally, immunocytochemistry findings confirmed the presence of human spermatogonia stem cell colonies. In general, it seems that the designed nanocomposite scaffold could provide a suitable capacity for self-renewal of human spermatogonia stem cells, which can have a good application potential in research and reconstructive medicine related to the field of male infertility.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Allahyari
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Banafshe Esmaeilzade
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
17
|
Gholami K, Solhjoo S, Aghamir SMK. Application of Tissue-Specific Extracellular Matrix in Tissue Engineering: Focus on Male Fertility Preservation. Reprod Sci 2022; 29:3091-3099. [PMID: 35028926 DOI: 10.1007/s43032-021-00823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
In vitro spermatogenesis and xenotransplantation of the immature testicular tissues (ITT) are the experimental approaches that have been developed for creating seminiferous tubules-like functional structures in vitro and keeping the integrity of the ITTs in vivo, respectively. These strategies are rapidly developing in response to the growing prevalence of infertility in adolescent boys undergoing cancer treatment, by the logic that there is no sperm cryopreservation option for them. Recently, with the advances made in the field of tissue engineering and biomaterials, these methods have achieved promising results for fertility preservation. Due to the importance of extracellular matrix for the formation of vascular bed around the grafted ITTs and also the creation of spatial arrangements between Sertoli cells and germ cells, today it is clear that the scaffold plays a very important role in the success of these methods. Decellularized extracellular matrix (dECM) as a biocompatible, functionally graded, and biodegradable scaffold with having tissue-specific components and growth factors can support reorganization and physiologic processes of originated cells. This review discusses the common protocols for the tissue decellularization, sterilization, and hydrogel formation of the decellularized and lyophilized tissues as well as in vitro and in vivo studies on the use of the testis-derived dECM for testicular organoids.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Solhjoo
- Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
18
|
Oliver E, Alves-Lopes JP, Harteveld F, Mitchell RT, Åkesson E, Söder O, Stukenborg JB. Self-organising human gonads generated by a Matrigel-based gradient system. BMC Biol 2021; 19:212. [PMID: 34556114 PMCID: PMC8461962 DOI: 10.1186/s12915-021-01149-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Advances in three-dimensional culture technologies have led to progression in systems used to model the gonadal microenvironment in vitro. Despite demonstrating basic functionality, tissue organisation is often limited. We have previously detailed a three-dimensional culture model termed the three-layer gradient system to generate rat testicular organoids in vitro. Here we extend the model to human first-trimester embryonic gonadal tissue. RESULTS Testicular cell suspensions reorganised into testis-like organoids with distinct seminiferous-like cords situated within an interstitial environment after 7 days. In contrast, tissue reorganisation failed to occur when mesonephros, which promotes testicular development in vivo, was included in the tissue digest. Organoids generated from dissociated female gonad cell suspensions formed loosely organised cords after 7 days. In addition to displaying testis-specific architecture, testis-like organoids demonstrated evidence of somatic cell differentiation. Within the 3-LGS, we observed the onset of AMH expression in the cytoplasm of SOX9-positive Sertoli cells within reorganised testicular cords. Leydig cell differentiation and onset of steroidogenic capacity was also revealed in the 3-LGS through the expression of key steroidogenic enzymes StAR and CYP17A1 within the interstitial compartment. While the 3-LGS generates a somatic cell environment capable of supporting germ cell survival in ovarian organoids germ cell loss was observed in testicular organoids. CONCLUSION The 3-LGS can be used to generate organised whole gonadal organoids within 7 days. The 3-LGS brings a new opportunity to explore gonadal organogenesis and contributes to the development of more complex in vitro models in the field of developmental and regenerative medicine.
Collapse
Affiliation(s)
- Elizabeth Oliver
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - João Pedro Alves-Lopes
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden.,Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Femke Harteveld
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.,Royal Hospital for Children and Young People, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,The R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Olle Söder
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden.
| |
Collapse
|
19
|
KERVANCIOĞLU G, KARADENİZ Z, KERVANCIOĞLU E. Current Approach to Spermatogonial Stem Cells in Vitro Maturation. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.918781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Aydos K, Aydos OS. Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA. J Clin Med 2021; 10:jcm10122687. [PMID: 34207121 PMCID: PMC8234729 DOI: 10.3390/jcm10122687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Retrieving spermatozoa from the testicles has been a great hope for patients with non-obstructive azoospermia (NOA), but relevant methods have not yet been developed to the level necessary to provide resolutions for all cases of NOA. Although performing testicular sperm extraction under microscopic magnification has increased sperm retrieval rates, in vitro selection and processing of quality sperm plays an essential role in the success of in vitro fertilization. Moreover, sperm cryopreservation is widely used in assisted reproductive technologies, whether for therapeutic purposes or for future fertility preservation. In recent years, there have been new developments using advanced technologies to freeze and preserve even very small numbers of sperm for which conventional techniques are inadequate. The present review provides an up-to-date summary of current strategies for maximizing sperm recovery from surgically obtained testicular samples and, as an extension, optimization of in vitro sperm processing techniques in the management of NOA.
Collapse
Affiliation(s)
- Kaan Aydos
- Department of Urology, Reproductive Health Research Center, School of Medicine, University of Ankara, 06230 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-748-8995
| | - Oya Sena Aydos
- Department of Medical Biology, School of Medicine, University of Ankara, 06230 Ankara, Turkey;
| |
Collapse
|
21
|
Eyni H, Ghorbani S, Nazari H, Hajialyani M, Razavi Bazaz S, Mohaqiq M, Ebrahimi Warkiani M, Sutherland DS. Advanced bioengineering of male germ stem cells to preserve fertility. J Tissue Eng 2021; 12:20417314211060590. [PMID: 34868541 PMCID: PMC8638075 DOI: 10.1177/20417314211060590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
In modern life, several factors such as genetics, exposure to toxins, and aging have resulted in significant levels of male infertility, estimated to be approximately 18% worldwide. In response, substantial progress has been made to improve in vitro fertilization treatments (e.g. microsurgical testicular sperm extraction (m-TESE), intra-cytoplasmic sperm injection (ICSI), and round spermatid injection (ROSI)). Mimicking the structure of testicular natural extracellular matrices (ECM) outside of the body is one clear route toward complete in vitro spermatogenesis and male fertility preservation. Here, a new wave of technological innovations is underway applying regenerative medicine strategies to cell-tissue culture on natural or synthetic scaffolds supplemented with bioactive factors. The emergence of advanced bioengineered systems suggests new hope for male fertility preservation through development of functional male germ cells. To date, few studies aimed at in vitro spermatogenesis have resulted in relevant numbers of mature gametes. However, a substantial body of knowledge on conditions that are required to maintain and mature male germ cells in vitro is now in place. This review focuses on advanced bioengineering methods such as microfluidic systems, bio-fabricated scaffolds, and 3D organ culture applied to the germline for fertility preservation through in vitro spermatogenesis.
Collapse
Affiliation(s)
- Hossein Eyni
- Department of Anatomical Sciences,
School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center
(iNANO), Aarhus University, Aarhus, Denmark
| | - Hojjatollah Nazari
- Research Center for Advanced
Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of
Medical Sciences, Tehran, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research
Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah,
Iran
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering,
University of Technology Sydney, Sydney, NSW, Australia
| | - Mahdi Mohaqiq
- Institute of Regenerative Medicine,
School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | | | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center
(iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Bashiri Z, Amiri I, Gholipourmalekabadi M, Falak R, Asgari H, Maki CB, Moghaddaszadeh A, Koruji M. Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomater Sci 2021; 9:3465-3484. [DOI: 10.1039/d0bm02209h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A summary of the study design showing the extraction of extracellular matrix of testicular tissue and the printing of hydrogel scaffolds and the interaction of testicular cells on three-dimensional scaffolds.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| | - Iraj Amiri
- Research Center for Molecular Medicine
- Hamadan University of Medical Sciences
- Hamadan
- Iran
- Endometrium and Research Center
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Tissue Engineering & Regenerative Medicine
| | - Reza Falak
- Immunology Research Center (IRC)
- Institute of Immunology and Infectious Diseases
- Iran University of Medical Sciences
- Tehran
- Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| | | | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| |
Collapse
|
23
|
Isolation, identification and differentiation of human spermatogonial cells on three-dimensional decellularized sheep testis. Acta Histochem 2020; 122:151623. [PMID: 32992121 DOI: 10.1016/j.acthis.2020.151623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Improvement of in vitro culture methods of Spermatogonial Stem Cells (SSCs) is known to be an effective procedure for further study of the process of spermatogenesis and can offer effective therapeutic modality for male infertility. Tissue decellularization by providing natural 3D and extracellular matrix (ECM) conditions for cell growth can be an alternative procedure to enhance in vitro culture conditions. In the present study, the testicular tissues were taken from brain death donors. After enzymatic digestion, the tissue cells were isolated and cultured for four weeks. Then the identity of the SSCs was confirmed using anti-GFRα1 and anti-PLZF antibodies via immunocytochemistry (ICC). The differentiation capacity of SSCs were evaluated by culture of them on a layer of decellularized testicular matrix (DTM) prepared from sheep testis, as well as under two-dimensional (2D) culture with differentiation medium. After four and six weeks of the initiation of differentiation culture, the pre-meiotic, meiotic and post- meiotic genes at the mRNA and protein levels was examined via qPCR and ICC methods, respectively. The results showed that pre-meiotic, meiotic and post-meiotic genes expressions were significantly higher in the cells cultured in DTM substrate (P ≤ 0.01).The present study indicated that, the natural structure of ECM prepare the suitable conditions for further study of the spermatogenesis process in the in vitro and contributes to the maintenance and treatment of male infertility.
Collapse
|
24
|
Application of platelet-rich plasma (PRP) improves self-renewal of human spermatogonial stem cells in two-dimensional and three-dimensional culture systems. Acta Histochem 2020; 122:151627. [PMID: 33002788 DOI: 10.1016/j.acthis.2020.151627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Spermatogonial stem cells (SSCs) are very sensitive to chemotherapy and radiotherapy, so male infertility is a great challenge for prepubertal cancer survivors. Cryoconservation of testicular cells before cancer treatment can preserve SSCs from treatment side effects. Different two-dimensional (2D) and three-dimensional (3D) culture systems of SSCs have been used in many species as a useful technique to in vitro spermatogenesis. We evaluated the proliferation of SSCs in 2D and 3D culture systems of platelet-rich plasma (PRP). testicular cells of four brain-dead patients cultivated in 2D pre-culture system, characterization of SSCs performed by RT-PCR, flow cytometry, immunocytochemistry and their functionality assessed by xenotransplantation to azoospermia mice. PRP prepared and dosimetry carried out to determine the optimized dose of PRP. After preparation of PRP scaffold, cytotoxic and histological evaluation performed and SSCs cultivated into three groups: control, 2D culture by optimized dose of PRP and PRP scaffold. The diameter and number of colonies measured and relative expression of GFRa1 and c-KIT evaluated by real-time PCR. Results indicated the expression of PLZF, VASA, OCT4, GFRa1 and vimentin in colonies after 2D pre-culture, xenotransplantation demonstrated proliferated SSCs have proper functionality to homing in mouse testes. The relative expression of c-KIT showed a significant increase as compared to the control group (*: p < 0.05) in PRP- 2D group, expression of GFRa1 and c-KIT in PRP scaffold group revealed a significant increase as compared to other groups (***: p < 0.001). The number and diameter of colonies in the PRP-2D group showed a considerable increase (p < 0.01) as compared to the control group. In PRP- scaffold group, a significant increase (p < 0.01) was seen only in the number of colonies related to the control group. Our results suggested that PRP scaffold can reconstruct a suitable structure to the in vitro proliferation of SSCs.
Collapse
|
25
|
Struijk RB, Mulder CL, van Daalen SKM, de Winter-Korver CM, Jongejan A, Repping S, van Pelt AMM. ITGA6+ Human Testicular Cell Populations Acquire a Mesenchymal Rather than Germ Cell Transcriptional Signature during Long-Term Culture. Int J Mol Sci 2020; 21:ijms21218269. [PMID: 33158248 PMCID: PMC7672582 DOI: 10.3390/ijms21218269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Autologous spermatogonial stem cell transplantation is an experimental technique aimed at restoring fertility in infertile men. Although effective in animal models, in vitro propagation of human spermatogonia prior to transplantation has proven to be difficult. A major limiting factor is endogenous somatic testicular cell overgrowth during long-term culture. This makes the culture both inefficient and necessitates highly specific cell sorting strategies in order to enrich cultured germ cell fractions prior to transplantation. Here, we employed RNA-Seq to determine cell type composition in sorted integrin alpha-6 (ITGA6+) primary human testicular cells (n = 4 donors) cultured for up to two months, using differential gene expression and cell deconvolution analyses. Our data and analyses reveal that long-term cultured ITGA6+ testicular cells are composed mainly of cells expressing markers of peritubular myoid cells, (progenitor) Leydig cells, fibroblasts and mesenchymal stromal cells and only a limited percentage of spermatogonial cells as compared to their uncultured counterparts. These findings provide valuable insights into the cell type composition of cultured human ITGA6+ testicular cells during in vitro propagation and may serve as a basis for optimizing future cell sorting strategies as well as optimizing the current human testicular cell culture system for clinical use.
Collapse
Affiliation(s)
- Robert B. Struijk
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Callista L. Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Saskia K. M. van Daalen
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Cindy M. de Winter-Korver
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Aldo Jongejan
- Department of Epidemiology & Data Science, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Sjoerd Repping
- Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
- Correspondence: ; Tel.: +31-20-56-67837
| |
Collapse
|
26
|
Vardiani M, Ghaffari Novin M, Koruji M, Nazarian H, Goossens E, Aghaei A, Seifalian AM, Ghasemi Hamidabadi H, Asgari F, Gholipourmalekabadi M. Gelatin Electrospun Mat as a Potential Co-culture System for In Vitro Production of Sperm Cells from Embryonic Stem Cells. ACS Biomater Sci Eng 2020; 6:5823-5832. [PMID: 33320586 DOI: 10.1021/acsbiomaterials.0c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering of 3D substrates with maximum similarity to seminiferous tubules would help to produce functional sperm cells in vitro from stem cells. Here, we present a 3D electrospun gelatin (EG) substrate seeded with Sertoli cells and determine its potential for guided differentiation of embryonic stem cells (ESCs) toward germline cells. The EG was fabricated by electrospinning, and its morphology under SEM, as well as cytobiocompatibility for Sertoli cells and ESCs, was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and cell attachment assay. Embryoid bodies (EBs) were formed from ESCs and co-cultured with Sertoli cells, induced with BMP4 for 3 and 7 consecutive days to induce the differentiation of EBs toward germline cells. The differentiation was investigated by immunocytochemistry (ICC), flow cytometry, and RT-PCR in four experimental groups of EBs (EBs cultured in gelatin-coated cell culture plates); Scaffold/EB (EBs cultured on EG); ESCs/Ser (EBs and Sertoli cells co-cultured on gelatin-coated cell culture plates without EG); and Scaffold/EB/Ser (EBs and Sertoli cells co-cultured on EG). All experimental groups exhibited a significantly increased MVH (germline-specific marker) and decreased c-KIT (stemness marker) expression when compared with the EB group. ICC and flow cytometry revealed that Scaffold/EB/Ser had the highest level of MVH and the lowest c-KIT expression at both 3 and 7 days postdifferentiation compared with other groups. RT-PCR results showed a significant increase in the germline marker (Dazl) and a significant decrease in the ESC stemness marker (Nanog) in Scaffold/EB compared to the EB group. The germline markers Gcna, Stella, Mvh, Stra8, Piwil2, and Dazl were significantly increased in Scaffold/EB/Ser compared to the Scaffold/EB group. Our findings revealed that the EG scaffold can provide an excellent substrate biomimicking the micro/nanostructure of native seminiferous tubules and a platform for Sertoli cell-EB communication required for growth and differentiation of ESCs into germline cells.
Collapse
Affiliation(s)
- Mina Vardiani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Reproductive Biotechnology Research Center, Aviccena Research Institute, ACECR, 14115-343 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Hamid Nazarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Ellen Goossens
- Biology of the Testis Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Abbas Aghaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd.), The London BioScience Innovation Centre, NW1 0NH London, United Kingdom
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran
| | - Fatemeh Asgari
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
27
|
Jabari A, Sadighi Gilani MA, Koruji M, Gholami K, Mohsenzadeh M, Rastegar T, Khadivi F, Ghanami Gashti N, Nikmahzar A, Mojaverrostami S, Talebi A, Ashouri Movassagh S, Rezaie MJ, Abbasi M. Three-dimensional co-culture of human spermatogonial stem cells with Sertoli cells in soft agar culture system supplemented by growth factors and Laminin. Acta Histochem 2020; 122:151572. [PMID: 32622422 DOI: 10.1016/j.acthis.2020.151572] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Application of a three-dimensional (3D) culture system for in vitro proliferation and differentiation of human spermatogonial stem cells (SSCs) is a useful tool for the investigation of the spermatogenesis process and the management of male infertility particularly in prepubertal cancer patients. The main purpose of this study was to investigate the proliferation of human SSCs co-cultured with Sertoli cells in soft agar culture system (SACS) supplemented by Laminin and growth factors. Testicular cells were isolated from testes of brain-dead patients and cultured in two-dimensional (2D) culture system for 3 weeks. After 3 weeks, functional SSCs were evaluated by xenotransplantation and also identification of cells was assessed by immunocytochemistry, flow cytometry, and RT-PCR. Then, SSCs and Sertoli cells were transferred to the upper layer of SACS for 3 weeks. After 3 weeks, the number of colonies and the expression of specific SSCs and Sertoli cell markers, as well as apoptotic genes were evaluated. Our results showed that transplanted SSCs, migrated into the basement membrane of seminiferous tubules of recipient mice. The expression of PLZF, α6-Integrin, and Vimentin proteins in SSCs and Sertoli cells were observed in 2D and 3D culture systems. The expression rate of PLZF, α6-Integrin, Bcl2, and colony number in SACS supplemented by Laminin and growth factors group were significantly higher than non-supplemented groups (P ≤ 0.01), but the expression rate of c-kit and Bax in supplemented group were significantly lower than non-supplemented groups (P ≤ 0.05). This 3D co-culture system decreased apoptosis and increased propagation of human SSCs. Therefore, this designed system can be utilized to increase the proliferation of human SSCs in prepubertal male cancer and azoospermic men to obtain an adequate SSCs number to outotransplant success and in vitro spermatogenesis.
Collapse
Affiliation(s)
- Ayob Jabari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Mohsenzadeh
- Iranian Tissue Bank and Research Center of Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Ghanami Gashti
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sepideh Ashouri Movassagh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Mohammad Jafar Rezaie
- Department of Embryology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
The air-liquid interface culture of the mechanically isolated seminiferous tubules embedded in agarose or alginate improves in vitro spermatogenesis at the expense of attenuating their integrity. In Vitro Cell Dev Biol Anim 2020; 56:261-270. [PMID: 32212030 DOI: 10.1007/s11626-020-00437-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
Optimization of tissue culture systems able to complete male germ cell maturation to post-meiotic stages is considered as an important matter in reproductive biology. Considering that hypoxia is one of the factors limiting the efficiency of organ culture, the aim of this study was to use isolated seminiferous tubules (STs), having more surface and less thickness, in an organotypic culture system in order to improve oxygen diffusion and reduce hypoxia. The mechanically separated STs embedded in agarose or alginate and 1-3-mm3 testicular tissue fragments of 3 adult mice were separately placed on the flat surface of agarose gel that was half-soaked in the medium. Survival and differentiation of germ cells using PLZF and SCP3 markers, identity of Sertoli cell using GATA4, cell proliferation with the Ki67 marker, and ST integrity using a ST scoring were evaluated up to 36 d at different culture times, each corresponding to the duration of one spermatogenic cycle. We observed a significantly reduced ST integrity in STs embedded in agarose or alginate on day 9 (versus tissue fragments p ≤ 0.05). There was no difference in the number of PLZF-positive cells between groups, but the number of SCP3 (in all-time points) and GATA4-positive cells was significantly higher in the culture of embedded STs. Although embedding STs can be useful for the progress of in vitro spermatogenesis, it makes them sensitive to degeneration. Further improvements are required to modify the air-liquid interface method to maintain ST integrity.
Collapse
|
29
|
Ziloochi Kashani M, Bagher Z, Asgari HR, Najafi M, Koruji M, Mehraein F. Differentiation of neonate mouse spermatogonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold. Syst Biol Reprod Med 2020; 66:202-215. [PMID: 32138551 DOI: 10.1080/19396368.2020.1725927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrospun nanofiber matrices sufficiently mimic the structural morphology of natural extracellular matrix. In this study, we aimed to examine the effects of agar/polyvinyl alcohol nanofiber (PVA) scaffold on the proliferation efficiency and differentiation potential of neonate mouse spermatogonial stem cells (SCCs). Testicular cells were isolated from testes of 40 mouse pups and were seeded in: 1) 2D cell culture plates in the absence (2D/-GF) or presence (2D/+GF) of growth factors and 2) onto agar/PVA scaffold in the absence (3D/-GF) or presence (3D/+GF) of growth factors. The cells were subsequently cultured for 4 weeks. First 2 weeks were dedicated to proliferative phase, whereas the next 2 weeks emphasized the differentiation phase. The identity of the SCCs was investigated at different time-points by flow cytometry and quantitative reverse transcription PCR (qRT-PCR) analyses against the germ cell markers, including PLZF, Id-4, Gfrα-1, Tekt-1, and Sycp-3. After 2 weeks of culture, the 3D/+GF group showed the highest percentage of PLZF-positive cells among culture systems (P < 0.05). The expression levels of pre-meiotic markers (Id-4 and Gfrα-1) decreased significantly in all groups, particularly in 3D/+GF group after 28 days of culture. Additionally, the cells in the 3D/+GF group displayed the highest expression of meiotic (Sycp-3) and post-meiotic markers (Tekt-1) 14 days after differentiation induction. Seemingly, the combination of the agar/PVA scaffold and growth factor-supplemented medium synergistically increased the differentiation rate of mouse SSCs into meiotic and post-meiotic cells. Thus, agar/PVA nanofiber scaffolds may have the potential for applications in the restoration of infertility, especially in azoospermic males. ABBREVIATIONS 2D: two dimentional; 3D: three dimentional; bFGF: basic fibroblast growth factor; BMP-4: bone morphogenetic protein 4; DMEM: Dulbecco's modified Eagle's medium; ECM: extracellular matrix; FCS: fetal calf serum; FTIR: Fourier-transform infrared spectroscopy; GDNF: glial cell line-derived neurotrophic factor; GF: growth factors; Gfrα-1, GDNF family co-receptor α1; Id-4, Inhibitor of DNA Binding 4; MTT: methylthiazoltetrazolium; PLZF: promyelocytic leukemia zinc finger; PVA: polyvinyl alcohol; qRT-PCR: quantitative reverse transcription PCR; RA: retinoic acid; SACS: soft agar culture system; SD: standard deviation; SEM: scanning electron microscope; SSCs: spermatogonial stem cells; Sycp-3, Synaptonemal complex protein 3; Tekt-1, Tektin 1.
Collapse
Affiliation(s)
- Marzieh Ziloochi Kashani
- Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, the Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences , Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Fereshteh Mehraein
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran.,Minimally Invasive Surgery Research Center, Iran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
30
|
Ashouri Movassagh S, Banitalebi Dehkordi M, Koruji M, Pourmand G, Farzaneh P, Ashouri Movassagh S, Jabari A, Samadian A, Khadivi F, Abbasi M. In Vitro Spermatogenesis by Three-dimensional Culture of Spermatogonial Stem Cells on Decellularized Testicular Matrix. Galen Med J 2019; 8:e1565. [PMID: 34466530 PMCID: PMC8344169 DOI: 10.31661/gmj.v8i0.1565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 01/15/2023] Open
Abstract
Background In the males, Spermatogonial Stem Cells (SSCs) contribute to the production of sex cells and fertility. In vitro SSCs culture can operate as an effective strategy for studies on spermatogenesis and male infertility treatment. Cell culture in a three-dimensional (3D) substrate, relative to a two-dimensional substrate (2D), creates better conditions for cell interaction and is closer to in vivo conditions. In the present study, in order to create a 3D matrix substrate, decellularized testicular matrix (DTM) was used to engender optimal conditions for SSCs culture and differentiation. Materials and Methods After, testicular cells enzymatic extraction from testes of brain-dead donors, the SSCs were proliferated in a specific culture medium for four weeks, and after confirming the identity of the colonies derived from the growth of these cells, they were cultured on a layer of DTM as well as in 2D condition with a differentiated culture medium. In the Sixth week since the initiation of the differentiation culture, the expression of pre meiotic (OCT4 & PLZF ), meiotic (SCP3 & BOULE) and post meiotic (CREM & Protamine-2) genes were measured in both groups. Results The results indicated that the expression of pre meiotic, meiotic and post meiotic genes was significantly higher in the cells cultured on DTM (P ≤ 0.001). Conclusion SSCs culture in DTM with the creation of ECM and similar conditions with in vivo can be regarded as a way of demonstrating spermatogenesis in vitro, which can be adopted as a treatment modality for male infertility.
Collapse
Affiliation(s)
- Sepideh Ashouri Movassagh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Mehdi Banitalebi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Pourmand
- Urology Research Center, Sina Hospital, TehranUniversity of Medical Sciences, Tehran, Iran
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Sanaz Ashouri Movassagh
- Midwifery and Disease Reproduction group, College of Veterinary Medicine, Islamic Azad University, Science and Research Unite, Tehran, Iran
| | - Ayob Jabari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Samadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence to: Mehdi Abbasi Ph.D, Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Qods Street, Enqelab Square, Tehran, Iran Telephone Number: +98-21-6405 3411 Email Address:
| |
Collapse
|