1
|
Ruiz-Santiago C, Rodríguez-Pinacho CV, Pérez-Sánchez G, Acosta-Cruz E. Effects of selective serotonin reuptake inhibitors on endocrine system (Review). Biomed Rep 2024; 21:128. [PMID: 39070109 PMCID: PMC11273194 DOI: 10.3892/br.2024.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are typically prescribed for treating major depressive disorder (MDD) due to their high efficacy. These drugs function by inhibiting the reuptake of serotonin [also termed 5-hydroxytryptamine (5-HT)], which raises the levels of 5-HT in the synaptic cleft, leading to prolonged activation of postsynaptic 5-HT receptors. Despite the therapeutic benefits of SSRIs, this mechanism of action also disturbs the neuroendocrine response. Hypothalamic-pituitary-adrenal (HPA) axis activity is strongly linked to both MDD and the response to antidepressants, owing to the intricate interplay within the serotonergic system, which regulates feeding, water intake, sexual drive, reproduction and circadian rhythms. The aim of the present review was to provide up-to-date evidence for the proposed effects of SSRIs, such as fluoxetine, citalopram, escitalopram, paroxetine, sertraline and fluvoxamine, on the endocrine system. For this purpose, the literature related to the effects of SSRIs on the endocrine system was searched using the PubMed database. According to the available literature, SSRIs may have an adverse effect on glucose metabolism, sexual function and fertility by dysregulating the function of the HPA axis, pancreas and gonads. Therefore, considering that SSRIs are often prescribed for extended periods, it is crucial to monitor the patient closely with particular attention to the function of the endocrine system.
Collapse
Affiliation(s)
- Carolina Ruiz-Santiago
- Department of Biotechnology, Faculty of Chemistry, Universidad Autónoma de Coahuila, Saltillo Coahuila 25280, México
| | | | - Gilberto Pérez-Sánchez
- Laboratory of Psychoimmunology, National Institute of Psychiatry Ramón de la Fuente Muñíz, México City 14370, México
| | - Erika Acosta-Cruz
- Department of Biotechnology, Faculty of Chemistry, Universidad Autónoma de Coahuila, Saltillo Coahuila 25280, México
| |
Collapse
|
2
|
Huang Q, Wu H, Xiao X, Qin X, Liu S. Preparation of oyster peptide and Pfaffia glomerata pressed candy and its ameliorative effect on sexual dysfunction in male mice. Food Sci Nutr 2024; 12:5572-5586. [PMID: 39139926 PMCID: PMC11317697 DOI: 10.1002/fsn3.4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 08/15/2024] Open
Abstract
Oyster peptide (OP) and Pfaffia glomerata extract (PGE) were used as raw materials. The optimal formulation of the pressed candy (PC) was optimized by one-way experiment and D-optimal mixture experiment design, and animal experiment was used to evaluate the effect of PC on male sexual dysfunction. The results showed that PC intervention significantly improved the sexual behavior of male mice with sexual dysfunction, including a significant shortening of the mount latency (ML) and intromission latency, and a significant increase in the mount frequency (MF) and intromission frequency (IF). At the same time, the concentrations of serum testosterone (T) and luteinizing hormone (LH) in mice were restored, and the erectile parameters and pathological changes of penile tissue were improved. Further studies found that PC intervention increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and reduced the content of malondialdehyde (MDA) in testicular tissue. In addition, PC intervention improved testicular tissue morphology. In conclusion, the obtained PC has good taste quality, and the relevant quality indicators are qualified. It has a good ameliorative effect on male sexual dysfunction and may be a potential dietary supplement.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable ProcessingZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
| | - Haiying Wu
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable ProcessingZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
| | - Xiangxin Xiao
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable ProcessingZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
| | - Xiaoming Qin
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable ProcessingZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
| | - Suqing Liu
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
3
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Altieri MA, da Silva AS, da Silva Moreira S, Zapaterini JR, Arena AC, Barbisan LF. Safety of lactational exposure to venlafaxine on the rat mammary gland development and carcinogenesis in F1 female offspring. Reprod Toxicol 2023; 120:108451. [PMID: 37532207 DOI: 10.1016/j.reprotox.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
The chronic use of selective serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitors (SNRIs) may result in human gynecomastia, mammoplasia, galactorrhea, and elevated breast cancer risk. As antidepressants are frequently used for postpartum depression (PPD) treatment, this study investigated the adverse effects of lactational exposure to venlafaxine (VENL, a selective SNRI) on mammary gland development and carcinogenesis in F1 female offspring. Thus, lactating Wistar rats (F0) received VENL by oral gavage at daily doses of 3.85, 7.7, or 15.4 mg/kg (N = 9, each group) from lactational day (LD 1) until the weaning of the offspring (LD 21). F1 female offspring were euthanized for mammary gland, and ovary histological analyses on the post-natal day (PND) 22 and 30 (1 pup/litter/period, N = 9, each group). At PND 22, other females (2 pups/litter, N = 18, each group) received a single dose of carcinogen N-methyl-N-nitrosourea (MNU, 50 mg/kg) intraperitoneally (i.p.) for tumor susceptibility assay until PND 250. Tumor incidence and latency were recorded and representative tumor samples were collected for histopathology. The results indicate that lactational exposure to VENL did not alter the development of the mammary gland (epithelial ductal tree or the mean number of terminal end buds), or the ovary (weight and primary, secondary, tertiary, and Graafian follicles) in prepubertal F1 female offspring. In addition, VENL exposure did not influence tumor incidence or tumor latency in adult female offspring that received MNU. Thus, the findings of this animal study indicated that lactational VENL exposure, a period similar to human PPD, did not exert an adverse effect on the mammary gland development at the prepubertal phase or on chemically induced mammary tumorigenesis in adult F1 female rats.
Collapse
Affiliation(s)
- Marcelo Augusto Altieri
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | - Anielly Sarana da Silva
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | - Suyane da Silva Moreira
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | - Joyce Regina Zapaterini
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, SP, Brazil; São Paulo State University (UNESP), Faculty of Medicine, Department of Pathology, Botucatu, SP, Brazil
| | - Arielle Cristina Arena
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Alyoshina NM, Tkachenko MD, Malchenko LA, Shmukler YB, Nikishin DA. Uptake and Metabolization of Serotonin by Granulosa Cells Form a Functional Barrier in the Mouse Ovary. Int J Mol Sci 2022; 23:ijms232314828. [PMID: 36499156 PMCID: PMC9739058 DOI: 10.3390/ijms232314828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Serotonin (5-HT) plays an essential role in regulating female reproductive function in many animals. 5-HT accumulates in the mammalian ovary with the involvement of membrane serotonin transporter SERT and is functionally active in the oocytes of growing follicles, but shows almost no activity in follicular cells. In this study, we clarified the interplay between 5-HT membrane transport and its degradation by monoamine oxidase (MAO) in the mammalian ovary. Using pharmacologic agents and immunohistochemical staining of the cryosections of ovaries after serotonin administration in vitro, we demonstrated the activity of transport and degradation systems in ovarian follicles. The MAO inhibitor pargyline increased serotonin accumulation in the granulosa cells of growing follicles, indicating the activity of both serotonin uptake and degradation by MAO in these cells. The activity of MAO and the specificity of the membrane transport of serotonin was confirmed in primary granulosa cell culture treated with pargyline and fluoxetine. Moreover, the accumulation of serotonin is more effective in the denuded oocytes and occurs at lower concentrations than in the oocytes within the follicles. This confirms that the activity of SERT and MAO in the granulosa cells surrounding the oocytes impedes the accumulation of serotonin in the oocytes and forms a functional barrier to serotonin.
Collapse
Affiliation(s)
- Nina M. Alyoshina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Maria D. Tkachenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, 119991 Moscow, Russia
| | - Lyudmila A. Malchenko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Yuri B. Shmukler
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Denis A. Nikishin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|