1
|
Bellido-Quispe DK, Arcce IML, Pinzón-Osorio CA, Campos VF, Remião MH. Chemical activation of mammalian oocytes and its application in camelid reproductive biotechnologies: A review. Anim Reprod Sci 2024; 266:107499. [PMID: 38805838 DOI: 10.1016/j.anireprosci.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Mammalian oocyte activation is a critical process occurring post-gamete fusion, marked by a sequence of cellular events initiated by an upsurge in intracellular Ca2+. This surge in calcium orchestrates the activation/deactivation of specific kinases, leading to the subsequent inactivation of MPF and MAPK activities, alongside PKC activation. Despite various attempts to induce artificial activation using distinct chemical compounds as Ca2+ inducers and/or Ca2+-independent agents, the outcomes have proven suboptimal. Notably, incomplete suppression of MPF and MAPK activities persists, necessitating a combination of different agents for enhanced efficiency. Moreover, the inherent specificity of activation methods for each species precludes straightforward extrapolation between them. Consequently, optimization of protocols for each species and for each technique, such as PA, ICSI, and SCNT, is required. Despite recent strides in camelid biotechnologies, the field has seen little advancement in chemical activation methods. Only a limited number of chemical agents have been explored, and the effects of many remain unknown. In ICSI, despite obtaining blastocysts with different chemical compounds that induce Ca2+ and calcium-independent increases, viable offspring have not been obtained. However, SCNT has exhibited varying outcomes, successfully yielding viable offspring with a reduced number of chemical activators. This article comprehensively reviews the current understanding of the physiological activation of oocytes and the molecular mechanisms underlying chemical activation in mammals. The aim is to transfer and apply this knowledge to camelid reproductive biotechnologies, with emphasis on chemical activation in PA, ICSI, and SCNT.
Collapse
Affiliation(s)
| | | | - César Augusto Pinzón-Osorio
- Laboratório de Fisiopatologia e Biotécnicas da Reprodução Animal (FiBRA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
2
|
Ghazawi A, Strepis N, Anes F, Yaaqeib D, Ahmed A, AlHosani A, AlShehhi M, Manzoor A, Habib I, Wani NA, Hays JP, Khan M. First Report of Colistin-Resistant Escherichia coli Carrying mcr-1 IncI2(delta) and IncX4 Plasmids from Camels ( Camelus dromedarius) in the Gulf Region. Antibiotics (Basel) 2024; 13:227. [PMID: 38534662 DOI: 10.3390/antibiotics13030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Addressing the emergence of antimicrobial resistance (AMR) poses a significant challenge in veterinary and public health. In this study, we focused on determining the presence, phenotypic background, and genetic epidemiology of plasmid-mediated colistin resistance (mcr) in Escherichia coli bacteria isolated from camels farmed in the United Arab Emirates (UAE). Fecal samples were collected from 50 camels at a Dubai-based farm in the UAE and colistin-resistant Gram-negative bacilli were isolated using selective culture. Subsequently, a multiplex PCR targeting a range of mcr-genes, plasmid profiling, and whole-genome sequencing (WGS) were conducted. Eleven of fifty camel fecal samples (22%) yielded colonies positive for E. coli isolates carrying the mcr-1 gene on mobile genetic elements. No other mcr-gene variants and no chromosomally located colistin resistance genes were detected. Following plasmid profiling and WGS, nine E. coli isolates from eight camels were selected for in-depth analysis. E. coli sequence types (STs) identified included ST7, ST21, ST24, ST399, ST649, ST999, and STdaa2. Seven IncI2(delta) and two IncX4 plasmids were found to be associated with mcr-1 carriage in these isolates. These findings represent the first identification of mcr-1-carrying plasmids associated with camels in the Gulf region. The presence of mcr-1 in camels from this region was previously unreported and serves as a novel finding in the field of AMR surveillance.
Collapse
Affiliation(s)
- Akela Ghazawi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), P.O. Box 2040 Rotterdam, The Netherlands
| | - Febin Anes
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Dana Yaaqeib
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amal Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Aysha AlHosani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mirah AlShehhi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ashrat Manzoor
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nisar A Wani
- Reproductive Biotechnology Center, Dubai P.O. Box 299003, United Arab Emirates
| | - John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), P.O. Box 2040 Rotterdam, The Netherlands
| | - Mushtaq Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Huamani MC, Palomino CYG, Arcce IML, Chaves MS, Melo LM, de Figueirêdo Freitas VJ. Does the addition of follicular fluid in the in vitro maturation medium increase the oocyte maturation and embryo production in alpacas? Trop Anim Health Prod 2023; 55:232. [PMID: 37284911 DOI: 10.1007/s11250-023-03646-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
In alpacas (Vicugna pacos), the high cost of in vitro embryo production is also a consequence of the use of several substances in the culture medium. In addition, embryo production rates in this species are still considered low. Thus, in attempt to reduce the cost and to improve the in vitro embryo production rates, this study evaluates the effect of adding follicular fluid (FF) in the in vitro maturation medium on oocyte maturation and subsequent embryo production. After ovary collection at the local slaughterhouse, the oocytes were recovered, selected, and allocated in experimental groups: standard maturation medium (G1) and simplified medium added by 10% FF (G2). The FF was acquired from follicles between 7- and 12-mm diameter. The cumulus cell expansion and the embryo production rates were analyzed by chi-square with p < 0.05. No differences (p > 0.05) were observed in maturation rate between G1 (66.36%) and G2 (63.12%) groups. Likewise, no significant difference (p > 0.05) was verified between G1 and G2 for morula (40.85 vs 38.45%), blastocyst (7.01 vs 6.93%), and total number of embryos (47.87 vs 45.38%). In conclusion, it was possible to simplify the medium used for in vitro maturation of alpaca oocytes resulting in embryo production rates similar to the standard medium.
Collapse
Affiliation(s)
| | | | | | - Maiana Silva Chaves
- Laboratório de Fisiologia E Controle da Reprodução, Universidade Estadual Do Ceará (UECE), Fortaleza, Brazil
| | | | | |
Collapse
|
4
|
The Flourishing Camel Milk Market and Concerns about Animal Welfare and Legislation. Animals (Basel) 2022; 13:ani13010047. [PMID: 36611656 PMCID: PMC9817819 DOI: 10.3390/ani13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The worldwide dromedary milk production has increased sharply since the beginning of this century due to prolonged shelf life, improved food-safety and perceived health benefits. Scientific confirmation of health claims will expand the market of dromedary milk further. As a result, more and more dromedaries will be bred for one purpose only: the highest possible milk production. However, intensive dromedary farming systems have consequences for animal welfare and may lead to genetic changes. Tighter regulations will be implemented to restrict commercialization of raw milk. Protocols controlling welfare of dromedaries and gene databases of milk-dromedaries will prevent negative consequences of intensive farming. In countries where dromedaries have only recently been introduced as production animal, legislators have limited expertise on this species. This is exemplified by an assessment on behalf of the Dutch government, recommending prohibiting keeping this species from 2024 onwards because the dromedary was deemed to be insufficiently domesticated. Implementation of this recommendation in Dutch law would have devastating effects on existing dromedary farms and could also pave the way for adopting similar measures in other European countries. In this paper it is shown that the Dutch assessment lacks scientific rigor. Awareness of breeders and legislators for the increasing knowledge about dromedaries and their products would strengthen the position of dromedaries as one of the most adapted and sustainable animals.
Collapse
|
5
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
6
|
Landeo L, Zuñiga M, Gastelu T, Artica M, Ruiz J, Silva M, Ratto MH. Oocyte Quality, In Vitro Fertilization and Embryo Development of Alpaca Oocytes Collected by Ultrasound-Guided Follicular Aspiration or from Slaughterhouse Ovaries. Animals (Basel) 2022; 12:ani12091102. [PMID: 35565530 PMCID: PMC9102040 DOI: 10.3390/ani12091102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The morphological quality and the in vitro developmental competence of cumulus-oocyte complexes (COCs) collected from in vivo or slaughtered alpacas was compared. COCs were recovered from ovarian follicles using: (i) manual aspiration in ovaries of alpacas (n = 15) sacrificed at a local slaughterhouse, or (ii) transrectal ultrasound-guided follicular aspiration (or ovum-pick-up, OPU) in live alpacas (n = 13) 4 days after the administration of an ovarian superstimulation protocol (200 UI eCG). COCs recovered from both groups were morphologically evaluated and graded. Grade I to III COCs were in vitro matured for 26 h and in vitro fertilized afterwards for 20 h using fresh alpaca epididymal spermatozoa. Presumptive zygotes from both groups were in vitro cultured for 7 days. The proportion of COCs recovered over the total number of follicles punctured was similar between groups, but the mean number of COCs collected from individual ovaries was greater (p < 0.05) in slaughterhouse ovaries. A significantly higher (p < 0.05) percentage of low-quality COCs (grades III and IV) and a lower (p < 0.05) percentage of grade I COCs was obtained using OPU. The number of blastocysts, regarding cleavage and COCs collected, was higher (p < 0.007 and p < 0.0002 respectively) for COCs collected by OPU; however, the total number of blastocysts per female did not differ between groups. We can conclude that the recovery rate and morphological quality of COCs was significantly higher when follicles were manually aspirated from slaughterhouse alpaca ovaries; however, a statistically higher developmental potential was observed in oocytes collected by OPU from live alpaca donors.
Collapse
Affiliation(s)
- Leandra Landeo
- Laboratory of Reproductive Biotechnologies, Faculty of Engineer Sciences, Universidad Nacional de Huancavelica, Huancavelica 09001, Peru; (L.L.); (M.Z.); (T.G.); (M.A.); (J.R.)
- Vicepresidencia de Investigación, Universidad Nacional de Moquegua, Moquegua 18001, Peru
| | - Michele Zuñiga
- Laboratory of Reproductive Biotechnologies, Faculty of Engineer Sciences, Universidad Nacional de Huancavelica, Huancavelica 09001, Peru; (L.L.); (M.Z.); (T.G.); (M.A.); (J.R.)
| | - Teddy Gastelu
- Laboratory of Reproductive Biotechnologies, Faculty of Engineer Sciences, Universidad Nacional de Huancavelica, Huancavelica 09001, Peru; (L.L.); (M.Z.); (T.G.); (M.A.); (J.R.)
| | - Marino Artica
- Laboratory of Reproductive Biotechnologies, Faculty of Engineer Sciences, Universidad Nacional de Huancavelica, Huancavelica 09001, Peru; (L.L.); (M.Z.); (T.G.); (M.A.); (J.R.)
| | - Jaime Ruiz
- Laboratory of Reproductive Biotechnologies, Faculty of Engineer Sciences, Universidad Nacional de Huancavelica, Huancavelica 09001, Peru; (L.L.); (M.Z.); (T.G.); (M.A.); (J.R.)
- Vicepresidencia de Investigación, Universidad Nacional de Moquegua, Moquegua 18001, Peru
| | - Mauricio Silva
- Department of Veterinary Science and Public Health, Faculty of Natural Resources, Universidad Católica de Temuco, Temuco 4780000, Chile;
- Núcleo de Investigación en Producción Alimentaria, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Marcelo H. Ratto
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence:
| |
Collapse
|
7
|
Currin L, Baldassarre H, Bordignon V. In Vitro Production of Embryos from Prepubertal Holstein Cattle and Mediterranean Water Buffalo: Problems, Progress and Potential. Animals (Basel) 2021; 11:2275. [PMID: 34438733 PMCID: PMC8388507 DOI: 10.3390/ani11082275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
Laparoscopic ovum pick-up (LOPU) coupled with in vitro embryo production (IVEP) in prepubertal cattle and buffalo accelerates genetic gain. This article reviews LOPU-IVEP technology in prepubertal Holstein Cattle and Mediterranean Water Buffalo. The recent expansion of genomic-assisted selection has renewed interest and demand for prepubertal LOPU-IVEP schemes; however, low blastocyst development rates has constrained its widespread implementation. Here, we present an overview of the current state of the technology, limitations that persist and suggest possible solutions to improve its efficiency, with a focus on gonadotropin stimulations strategies to prime oocytes prior to follicular aspiration, and IVEP procedures promoting growth factor metabolism and limiting oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | | | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.C.); (H.B.)
| |
Collapse
|
8
|
Blastocyst formation, embryo transfer and breed comparison in the first reported large scale cloning of camels. Sci Rep 2021; 11:14288. [PMID: 34253742 PMCID: PMC8275768 DOI: 10.1038/s41598-021-92465-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cloning, through somatic cell nuclear transfer (SCNT), has the potential for a large expansion of genetically favorable traits in a population in a relatively short term. In the present study we aimed to produce multiple cloned camels from racing, show and dairy exemplars. We compared several parameters including oocyte source, donor cell and breed differences, transfer methods, embryo formation and pregnancy rates and maintenance following SCNT. We successfully achieved 47 pregnancies, 28 births and 19 cloned offspring who are at present healthy and have developed normally. Here we report cloned camels from surgical embryo transfer and correlate blastocyst formation rates with the ability to achieve pregnancies. We found no difference in the parameters affecting production of clones by camel breed, and show clear differences on oocyte source in cloning outcomes. Taken together we demonstrate that large scale cloning of camels is possible and that further improvements can be achieved.
Collapse
|
9
|
Fathi M, Salama A, El-Shahat KH, El-Sherbiny HR, Abdelnaby EA. Effect of melatonin supplementation during IVM of dromedary camel oocytes (Camelus dromedarius) on their maturation, fertilization, and developmental rates in vitro. Theriogenology 2021; 172:187-192. [PMID: 34218101 DOI: 10.1016/j.theriogenology.2021.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023]
Abstract
The positive impact of melatonin on in vitro embryo production (IVEP) has been reported in many domestic species; however, no studies have been carried out in camelids. We aimed to evaluate the effects of melatonin supplementation in maturation media on in vitro maturation, fertilization, and preimplantation embryo development of dromedary camel oocytes (experiment 1). We also evaluated the concentrations of total antioxidant capacity (TAC), and malondialdehyde (MDA) in the IVM spent medium in relation to melatonin supplementation. Cumulus oocyte complexes (COCs) were cultured in in vitro maturation media (IVM) supplemented with either 0.0, 25.0, 50.0 or 75.0 μM of melatonin for 30 h. Matured oocytes were then fertilized in vitro with epididymal camel spermatozoa. Following IVF, the resulting embryos were cultured in vitro for seven days. The percentage of maturation, fertilization, cleavage, and embryo developmental rates (morula and blastocyst) was recorded (experiment 1). TAC and MDA levels in the IVM spent maturation media were also evaluated at 30 h post-IVM (experiment 2). The results showed that supplementation of IVM media with 25 μM melatonin significantly improved oocyte nuclear maturation, fertilization (18 h post-insemination; pi), cleavage (day 3 pi), morula (day 5 pi) and blastocyst (day 7 pi) rates as compared with the controls and other melatonin-supplemented groups. Furthermore, the TAC in the IVM spent media was significantly increased (P < 0.05) in 25 μM melatonin supplemented groups than those supplemented with 0.0, 50.0, 75.0 μM melatonin. However, the concentration of MDA was significantly lower (P < 0.05) in IVM media supplemented with 25.0 μM of melatonin when compared with the control and other treatment groups. In conclusion, supplementation of IVM medium with 25 μM of melatonin could enhance the in vitro developmental capacity of dromedary camel oocytes.
Collapse
Affiliation(s)
- Mohamed Fathi
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ali Salama
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - K H El-Shahat
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - H R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Elshymaa A Abdelnaby
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|