1
|
Xu JJ, Dai J, Xie QH, Du PC, Li C, Zhou H. Effect of Luhong formula on the cardiac rehabilitation of patients with chronic heart failure. World J Clin Cases 2024; 12:3027-3034. [PMID: 38898832 PMCID: PMC11185362 DOI: 10.12998/wjcc.v12.i17.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Current treatments for chronic heart failure (CHF) are therapeutically ineffective. The optimization of treatments for this disease needs to be explored and analyzed. AIM To analyze the effect of using Luhong Formula in the cardiac rehabilitation of patients with CHF and its influence on cardiopulmonary function (CPF) and prognosis. METHODS In total, 160 patients with CHF admitted between June 2022 and June 2023 were selected, including 75 receiving perindopril (control group) and 85 receiving Luhong Formula (research group). We conducted comparative analyses on the curative effects of traditional Chinese medicine (TCM) syndromes and cardiac function, CPF [oxygen consumption at the anaerobic threshold (VO2 AT) and at peak exercise (peak VO2)], echocardiographic indexes [left atrial volume index (LAVI), left ventricular muscle mass index (LVMI), left ventricular ejection fraction (LVEF)], and prognosis [major adverse cardiovascular events (MACEs) at 6 months follow-up]. RESULTS The research group showed markedly higher curative effects of TCM syndromes and cardiac function than the control group. In addition, post-treatment VO2 AT, peak VO2, LVMI and LVEF in the research group were significantly higher, whereas LAVI was significantly lower, than those of the control group. Furthermore, fewer patients in the research group developed MACEs at the 6-month follow-up. CONCLUSION Luhong Formula is more therapeutically effective than perindopril for the cardiac rehabilitation of patients with CHF, specifically in enhancing CPF and prognosis.
Collapse
Affiliation(s)
- Ji-Jie Xu
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Jian Dai
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Qi-Hai Xie
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Pei-Chao Du
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Cha Li
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| | - Hua Zhou
- Department of Cardiology & Cardiovascular Research Institute, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, China
| |
Collapse
|
2
|
Wilding JPH, Evans M, Fernando K, Gorriz JL, Cebrian A, Diggle J, Hicks D, James J, Newland-Jones P, Ali A, Bain S, Da Porto A, Patel D, Viljoen A, Wheeler DC, Del Prato S. The Place and Value of Sodium-Glucose Cotransporter 2 Inhibitors in the Evolving Treatment Paradigm for Type 2 Diabetes Mellitus: A Narrative Review. Diabetes Ther 2022; 13:847-872. [PMID: 35307801 PMCID: PMC8934539 DOI: 10.1007/s13300-022-01228-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Over recent years, the expanding evidence base for sodium-glucose cotransporter-2 inhibitor (SGLT2i) therapies has revealed benefits beyond their glucose-lowering efficacy in the treatment of Type 2 diabetes mellitus (T2DM), resulting in their recognition as cardiorenal medicines. While SGLT2is continue to be recommended among the second-line therapies for the treatment of hyperglycaemia, their true value now extends to the prevention of debilitating and costly cardiovascular and renal events for high-risk individuals, with particular benefit shown in reducing major adverse cardiac events and heart failure (HF) and slowing the progression of chronic kidney disease. However, SGLT2i usage is still suboptimal among groups considered to be at greatest risk of cardiorenal complications. The ongoing coronavirus disease 2019 (COVID-19) pandemic has intensified financial pressures on healthcare systems, which may hamper further investment in newer effective medicines. Emerging evidence indicates that glycaemic control should be prioritised for people with T2DM in the era of COVID-19 and practical advice on the use of T2DM medications during periods of acute illness remains important, particularly for healthcare professionals working in primary care who face multiple competing priorities. This article provides the latest update from the Improving Diabetes Steering Committee, including perspectives on the value of SGLT2is as cost-effective therapies within the T2DM treatment paradigm, with particular focus on the latest published evidence relating to the prevention or slowing of cardiorenal complications. The implications for ongoing and future approaches to diabetes care are considered in the light of the continuing coronavirus pandemic, and relevant aspects of international treatment guidelines are highlighted with practical advice on the appropriate use of SGLT2is in commonly occurring T2DM clinical scenarios. The 'SGLT2i Prescribing Tool for T2DM Management', previously published by the Steering Committee, has been updated to reflect the latest evidence and is provided in the Supplementary Materials to help support clinicians delivering T2DM care.
Collapse
Affiliation(s)
- John P H Wilding
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Clinical Sciences Centre, University Hospital Aintree, Liverpool, UK.
| | - Marc Evans
- University Hospital Llandough, Cardiff, UK
| | | | - Jose Luis Gorriz
- University Hospital Clinic, University of Valencia, Valencia, Spain
| | - Ana Cebrian
- Spanish Diabetes Association, Catholic University of Murcia, Service Murciano de Salud, Cartagena, Murcia, Spain
- Centro de Salud Casco Antiguo Cartagena, Murcia, Spain
- Primary Care Research Group, Biomedical Research Institute of Murcia (IMIB), 30120, Murcia, Spain
| | - Jane Diggle
- College Lane Surgery, Ackworth, West Yorkshire, UK
| | | | - June James
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Amar Ali
- Royal Blackburn Hospital, Lancashire, UK
| | - Stephen Bain
- Swansea University and Diabetes Research Unit, Swansea, UK
| | | | | | - Adie Viljoen
- Cambridge University Hospitals NHS Foundation Trust, Stevenage, UK
| | | | | |
Collapse
|
3
|
Caruso L, Nadur NF, Brandão M, Peixoto Ferreira LDA, Lacerda RB, Graebin CS, Kümmerle AE. The Design of Multi-target Drugs to Treat Cardiovascular Diseases: Two (or more) Birds on one Stone. Curr Top Med Chem 2022; 22:366-394. [PMID: 35105288 DOI: 10.2174/1568026622666220201151248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVDs) comprise a group of diseases and disorders of the heart and blood vessels, which together are the number one cause of death worldwide, being associated with multiple genetic and modifiable risk factors, and that may directly arise from different etiologies. For a long time, the search for cardiovascular drugs was based on the old paradigm "one compound - one target", which aims to obtain a highly potent and selective molecule with only one desired molecular target. Although historically successful in the last decades, this approach ignores the multiple causes and the multifactorial nature of CVD's. Thus, over time, treatment strategies for cardiovascular diseases have changed and, currently, pharmacological therapies for CVD are mainly based on the association of two or more drugs to control symptoms and reduce cardiovascular death. In this context, the development of multitarget drugs, i.e, compounds having the ability to act simultaneously at multiple sites, is an attractive and relevant strategy that can be even more advantageous to achieve predictable pharmacokinetic and pharmacodynamics correlations as well as better patient compliance. In this review, we aim to highlight the efforts and rational pharmacological bases for the design of some promising multitargeted compounds to treat important cardiovascular diseases like heart failure, atherosclerosis, acute myocardial infarction, pulmonary arterial hypertension and arrhythmia.
Collapse
Affiliation(s)
- Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Marina Brandão
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Larissa de Almeida Peixoto Ferreira
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| |
Collapse
|