1
|
Yang Y, Zhou Y, Li X, He Y, Bai Y, Wang B, Chen S, Liu C. Transcriptome profiling reveals transcriptional regulation of Protegrin-1 on immune defense and development in porcine granulosa cells. Gene 2024; 890:147819. [PMID: 37741593 DOI: 10.1016/j.gene.2023.147819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Protegrin-1 (PG1) is an antimicrobial peptide (AMP) that has garnered increasing attention due to its potent immune defense activity. Our previous studies demonstrated the ability of PG1 to enhance proliferation and inhibit apoptosis of porcine granulosa cells (GCs) under oxidative stress. GCs play a crucial role in ovary follicular development. However, the specific function and underlying mechanisms of AMP in follicular development still need further elucidation. The present study aimed to comprehensively explore the biological effects of PG1 on porcine GCs using transcriptome profiling by RNA sequencing technology. Isolated GCs were incubated with or without PG1 for 24 h and transcriptome-wide analysis was exerted to identify differentially expressed genes (DEGs). The results of expression analysis revealed 1,235 DEGs, including 242 up-regulated genes and 993 down-regulated genes (|log2 (FoldChange)| > 1; adjusted P-value < 0.05). The expression levels of 7 selected DEGs were validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis, which was consistent with the RNA-sequencing data. Among the significant DEGs, several genes associated with GC function and ovarian follicle development were identified, such as estrogen receptor 2 (ESR2), growth and differentiation factor 6 (GDF6), cell division cycle 20 homolog (CDC20), Notch3, ephrin and Eph receptor system, Egl nine homolog 3 (EGLN3), and BCL2 like 14 (BCL2L14). Gene Ontology (GO) analysis revealed that the top three significant GO terms were inflammatory response, defense response, and granulocyte migration. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis presented that DEGs were mainly enriched in the immune system, infectious disease, signaling molecules and interaction, and immune disease. Furthermore, Ingenuity Pathway Analysis (IPA) predicted that the top activated pathway was Liver X Receptor (LXR)/ Retinoid X Receptor (RXR) Activation which is known to be associated with female reproduction. Predicted protein-protein interactions (PPIs) analysis identified complement C3 (C3) as the top node with the highest degree of network connection and revealed that DEGs in the sub-networks were involved in cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, chemokine signaling pathway, and metabolic process. In conclusion, this study expanded the understanding of the effects of PG1 on porcine GCs at the transcriptomic level and provided a theoretical basis for further investigation into the role of PG1 in immune defense and mammalian ovarian follicular development.
Collapse
Affiliation(s)
- Yiqing Yang
- Department of Life Science and Engineering, Foshan University, China
| | - Yuanyuan Zhou
- Department of Life Science and Engineering, Foshan University, China
| | - Xuan Li
- Department of Life Science and Engineering, Foshan University, China
| | - Yinlin He
- Department of Life Science and Engineering, Foshan University, China
| | - Yinshan Bai
- Department of Life Science and Engineering, Foshan University, China
| | - Bingyun Wang
- Department of Life Science and Engineering, Foshan University, China
| | - Shengfeng Chen
- Department of Life Science and Engineering, Foshan University, China
| | - Canying Liu
- Department of Life Science and Engineering, Foshan University, China.
| |
Collapse
|
2
|
Transcriptional downregulation of ABC transporters is related to follicular degeneration after vitrification and in vitro culture of ovine ovarian tissue. Theriogenology 2022; 177:127-132. [PMID: 34700069 DOI: 10.1016/j.theriogenology.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022]
Abstract
ATP-binding cassette (ABC) transporters perform multiple functions in reproductive tissues. During ovarian tissue vitrification, the plasma membrane has important functions in the influx or efflux of water, and substances such as cryoprotectants and channel proteins that are required in this process. Thus, the present study aimed to verify the relative abundance of mRNA transcript of ABC transporters ABCB1, ABCG2, and MRP2 after vitrification and in vitro culture (IVC) of ovine ovarian tissue. For this study, the ovarian cortex fragments were proportioned into four groups as fresh control, vitrified control, fresh culture, and vitrified culture groups. After vitrification and in vitro culture, the ovarian tissue was evaluated using morphological procedures. Further, relative abundance of ABCB1, ABCG2, and MRP2 transporter mRNA transcripts in the ovarian cortex subjected to aforementioned treatment conditions were evaluated using qPCR. Our results showed a negative association between degenerated follicles and mRNA transcript abundances of ABCB1 and ABCG2. In addition, the percentage of growing follicles in the ovine ovarian cortex after vitrification was similar to that of the fresh control tissue without in vitro culture. The in vitro culture of fresh and vitrified tissue however, showed a significant decrease in the percentage of growing follicles. To the best of our knowledge, we believe that our data for the first time has studied the relative abundances of ABCB1 and ABCG2 mRNA transcripts in the ovine ovarian cortex. In addition, alterations of these protein channels may be indicative of a deleterious effect of osmotic stress on follicular survival during vitrification. Furthermore, these effects were detectable only after the IVC of the ovarian tissues. Nonetheless, further studies are required to investigate the functions of ABC transporters in ovine folliculogenesis, especially after in vitro culture of ovarian tissue.
Collapse
|
3
|
Mohan UP, P B TP, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity - A review. Reprod Toxicol 2021; 102:80-89. [PMID: 33878324 DOI: 10.1016/j.reprotox.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
The anticancer drug doxorubicin has been associated with several adverse side-effects including reproductive toxicity in both genders. The current review has complied the mechanisms of doxorubicin induced reproductive toxicity. The articles cited in the review were searched using Google Scholar, PubMed, Scopus, Science Direct. Doxorubicin treatment has been found to cause a decrease in testicular mass along with histopathological deformities, oligospermia and abnormalities in sperm morphology. Apart from severely affecting the normal physiological role of both Leydig cells and Sertoli cells, doxorubicin also causes chromosome abnormalities and affects DNA methylase enzyme. Testicular lipid metabolism has been found to be negatively affected by doxorubicin treatment resulting in altered profile of sphingolipids glycerophospholipids and neutral lipids. Dysregulation of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β- hydroxysteroid dehydrogenase (17β-HSD) are strongly linked to testicular exposure to doxorubicin. Further, oxidative stress along with endoplasmic reticulum stress are also found to aggravate the male reproductive functioning in doxorubicin treated conditions. Several antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase (GPx) are downregulated by doxorubicin. It also disturbs the hormones of the hypothalamic-pituitary-gonadal (HPG)-axis including testosterone, luteinizing hormone, follicle stimulating hormone etc. In females, the drug disturbs folliculogenesis and oogenesis leading to failure of ovulation and uterine cycle. In rodent model the drug shortens pro-estrous and estrous phases. It was also found that doxorubicin causes mitochondrial dysfunction in oocytes with impaired calcium signaling along with ER stress. The goal of the present review is to comprehends various pathways due to which doxorubicin treatment promotes toxicity in male and female reproductive system.
Collapse
Affiliation(s)
- Uma Priya Mohan
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, PIN 626126, India
| | | | | | - Sankarganesh Arunachalam
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, PIN 626126, India.
| |
Collapse
|
4
|
Wang Y, Liu M, Zhang J, Liu Y, Kopp M, Zheng W, Xiao S. Multidrug Resistance Protein 1 Deficiency Promotes Doxorubicin-Induced Ovarian Toxicity in Female Mice. Toxicol Sci 2019; 163:279-292. [PMID: 29462422 DOI: 10.1093/toxsci/kfy038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance protein 1 (MDR1), a phase III drug transporter that exports substrates out of cells, has been discovered in both cancerous and normal tissues. The over expression of MDR1 in cancer cells contributes to multiple drug resistance, whereas the MDR1 in normal tissues protects them from chemical-induced toxicity. Currently, the role of MDR1 in the ovary has not been entirely understood. Our objective is to determine the function of MDR1 in protecting against chemotherapy-induced ovarian toxicity. Using both the in vivo transgenic mouse model and in vitro follicle culture model, we investigated the expression of MDR1 in the ovary, the effect of MDR1 deficiency on doxorubicin (DOX)-induced ovarian toxicity, and the ovarian steroid hormonal regulation of MDR1. Results showed that the MDR1 was expressed in the ovarian epithelial cells, stroma cells, theca cell layers, endothelial cells, and luteal cells. The lack of MDR1 did not affect female ovarian function and fertility; however, its deficiency significantly exacerbated the DOX-induced ovarian toxicity in both in vivo and in vitro models. The MDR1 showed significantly higher expression levels in the ovaries at estrus and metestrus stages than those at proestrus and diestrus stages. However, this dynamic expression pattern was not regulated by the ovarian steroid hormones of estrogen (E2) and progesterone (P4) but correlated to the number and status of corpus luteum. In conclusion, our study demonstrates that the lack of MDR1 promotes DOX-induced ovarian toxicity, suggesting the critical role of MDR1 in protecting female ovarian functions during chemotherapy.
Collapse
Affiliation(s)
- Yingzheng Wang
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208
| | - Mingjun Liu
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208
| | - Jiyang Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yuwen Liu
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Megan Kopp
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208
| | - Weiwei Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Institution for Water Pollution and Health Research, Fudan University, Shanghai 20032, China
| | - Shuo Xiao
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
5
|
Fu G, Wang L, Li L, Liu J, Liu S, Zhao X. Bacillus licheniformis CK1 alleviates the toxic effects of zearalenone in feed on weaned female Tibetan piglets. J Anim Sci 2019; 96:4471-4480. [PMID: 30169611 DOI: 10.1093/jas/sky301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 01/26/2023] Open
Abstract
Zearalenone (ZEA) is widely present in feedstuffs and raw materials, causing reproductive disorders in animals. In this study, Bacillus licheniformis CK1 was used to detoxify ZEA in feed for alleviating its effect in Tibetan piglets. A total of 18 weaned female Tibetan piglets were randomly divided into 3 groups: control group (Control, ZEA-free basal diet); treatment group 1 (T1, ZEA-contaminated diet); and treatment group 2 (T2, ZEA-contaminated but pre-fermented by CK1 diet). There were no significant differences of average daily feed intake (ADFI), average daily gain (ADG), and feed efficiency (FE) among the 3 groups (P > 0.05). The T1 treatment significantly increased the vulva size and relative weight of the reproductive organ (P < 0.05), compared with the Control. However, the T2 treatment caused a significant reduction (P < 0.05) in vulva size and relative weight of the reproductive organ compared with the T1 group. The levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (P), and estradiol (E2) in the T1 group were significantly lower (P < 0.05) than those in the Control, while the levels of LH, P, and E2 in the T2 group were significantly greater (P < 0.05) than those in the T1 group. Zearalenone significantly increased (P < 0.05) the expression of estrogen receptor α in uterus and ovary and estrogen receptor β in vagina, while these indicators were not significant different (P > 0.05) between the T2 group and the Control group. In comparison with the Control group, ZEA significantly increased (P < 0.05) expression of several ATP-binding cassette (ABC) transporters: ABCB1 and ABCb4 in the vagina, ABCA1 and ABCb4 in the uterus, and ABCB1, ABCb4, ABCD3, and ABCG2 in the ovary, while these transporters in the T2 group were significantly decreased (P < 0.05) compared with the T1 group. In conclusion, the present study demonstrates that B. licheniformis CK1 could alleviate the harmful effect of ZEA in Tibetan piglets.
Collapse
Affiliation(s)
- Guanhua Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jeruei Liu
- Institute of Biotechnology and Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Suozhu Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Animal Science, McGill University, Montreal, Québec, Canada
| |
Collapse
|
6
|
Guerreiro DD, de Lima LF, Mbemya GT, Maside CM, Miranda AM, Tavares KCS, Alves BG, Faustino LR, Smitz J, de Figueiredo JR, Rodrigues APR. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression. Cell Tissue Res 2018; 372:611-620. [DOI: 10.1007/s00441-018-2804-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
|
7
|
Schoevers EJ, Santos RR, Fink-Gremmels J, Roelen BAJ. Toxicity of beauvericin on porcine oocyte maturation and preimplantation embryo development. Reprod Toxicol 2016; 65:159-169. [PMID: 27474255 DOI: 10.1016/j.reprotox.2016.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Abstract
Beauvericin (BEA) is one of many toxins produced by Fusarium species that contaminate feed materials. The aim of this study was to assess its effects on porcine oocyte maturation and preimplantation embryo development. Cumulus-oocyte-complexes and developing embryos were exposed to BEA and cultured until the blastocyst stage. Cumulus cells, oocytes and embryos were examined for viability, progesterone synthesis, multidrug resistance protein (MDR1), ATP content and gene expression related to MDR1 function, oxidative phosphorylation, steroidogenesis and apoptosis. BEA was toxic in embryos, oocytes and cumulus cells at concentrations exceeding 0.5μM, and embryos were most vulnerable after the four-cell stage. Since BEA exerted different effects in embryos, oocytes and cumulus cells, the toxic mechanism is suggested to involve different pathways. Currently there are no consistent data on adverse effects of BEA in pig farms.
Collapse
Affiliation(s)
- Eric J Schoevers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Regiane R Santos
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
8
|
Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update 2015; 22:164-81. [PMID: 26545808 DOI: 10.1093/humupd/dmv049] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as 'gatekeepers' at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus.
Collapse
Affiliation(s)
- E Bloise
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S J Lye
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - W Gibb
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, ON, Canada Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
9
|
Zearalenone exposure modulates the expression of ABC transporters and nuclear receptors in pregnant rats and fetal liver. Toxicol Lett 2012; 211:246-56. [DOI: 10.1016/j.toxlet.2012.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022]
|
10
|
YOKOTA K, HIRANO T, URATA N, YAMAUCHI N, HATTORI MA. Upregulation of P-Glycoprotein Activity in Porcine Oocytes and Granulosa Cells During In Vitro Maturation. J Reprod Dev 2011; 57:322-6. [DOI: 10.1262/jrd.10-137m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazuko YOKOTA
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University
| | - Takuro HIRANO
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University
| | - Narumi URATA
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University
| | - Nobuhiko YAMAUCHI
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University
| | - Masa-aki HATTORI
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University
| |
Collapse
|
11
|
Coles LD, Lee IJ, Voulalas PJ, Eddington ND. Estradiol and Progesterone-Mediated Regulation of P-gp in P-gp Overexpressing Cells (NCI-ADR-RES) and Placental Cells (JAR). Mol Pharm 2009; 6:1816-25. [DOI: 10.1021/mp900077q] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lisa D. Coles
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, and Department of Pharmaceutical Sciences, School of Pharmacy, College of Notre Dame of Maryland, Baltimore, Maryland 21210
| | - Insong J. Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, and Department of Pharmaceutical Sciences, School of Pharmacy, College of Notre Dame of Maryland, Baltimore, Maryland 21210
| | - Pamela J. Voulalas
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, and Department of Pharmaceutical Sciences, School of Pharmacy, College of Notre Dame of Maryland, Baltimore, Maryland 21210
| | - Natalie D. Eddington
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, and Department of Pharmaceutical Sciences, School of Pharmacy, College of Notre Dame of Maryland, Baltimore, Maryland 21210
| |
Collapse
|
12
|
Storch CH, Nikendei C, Schild S, Haefeli WE, Weiss J, Herzog W. Expression and activity of P-glycoprotein (MDR1/ABCB1) in peripheral blood mononuclear cells from patients with anorexia nervosa compared with healthy controls. Int J Eat Disord 2008; 41:432-8. [PMID: 18348284 DOI: 10.1002/eat.20519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Pharmacotherapeutic strategies for treatment of anorexia nervosa (AN) are characterized by limited success. Some drugs used (antipsychotics, selective serotonin reuptake inhibitors) are transported by P-glycoprotein (P-gp), a transporter with major impact on pharmacokinetics of substrate drugs. Biochemical alterations seen in AN patients could lead to increased expression and/or activity of P-gp and therefore to diminished access of drugs to the brain. The aim of our study was to investigate expression and activity levels of P-gp in peripheral blood mononuclear cells (PBMCs) in AN patients. METHOD PBMCs of 16 AN patients and 16 controls were isolated. Activity of P-gp was determined by flow cytometry and expression was quantified by reverse-transcriptase-real-time-polymerase-chain-reaction. RESULTS Neither a significant difference in P-gp expression (AN: 0.00154 +/- 0.00088 [MDR1/beta2 mg], control: 0.00244 +/- 0.0013 [MDR1/beta2 mg], p = .138) nor a difference in P-gp activity (rhodamine 123 ratio AN: 1.79 +/- 0.73, control: 2.03 +/- 0.42, p = .20) between AN patients and healthy controls could be detected. In contrast to previous studies, expression and activity of P-gp correlated significantly (p = .0031). CONCLUSION Failure in pharmacotherapy with P-gp substrates in AN patients are probably neither caused by different P-gp expression nor activity levels.
Collapse
Affiliation(s)
- Caroline Henrike Storch
- Department of Internal Medicine VI, Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Fukuda H, He PJ, Yokota K, Soh T, Yamauchi N, Hattori MA. Progesterone-dependent and -independent expression of the multidrug resistance type I gene in porcine granulosa cells. Mol Cell Biochem 2006; 298:179-86. [PMID: 17131043 DOI: 10.1007/s11010-006-9364-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/25/2006] [Indexed: 11/24/2022]
Abstract
A primary role of plasma membrane P-glycoprotein (P-gp), encoded by multidrug resistance type I (MDR1), is to protect against naturally occurring xenotoxics. Progesterone (P(4)) profoundly influences MDR1 expression in granulosa cells and luteal cells. Here, P(4) regulation of MDR1 expression was investigated in porcine granulosa cells using the P(4)-mediated promoter activity assay and a P4 receptor (PR) antagonist (RU-486). The promoter activity was measured chronologically for 48 h in cells transfected with the PR response element-containing pGL3. LH could stimulate the promoter activity through endogenous P4, with a maximum activity at 5 h. MDR1 mRNA level was highly maintained at 24-36 h. Conversely, exogenous P4 prolonged the promoter activity to further 10 h, and the high level of MDR1 mRNA was maintained even at 48 h. RU-486 completely inhibited the promoter activity, but the level of MDR1 mRNA rapidly increased in the presence of RU-486. The granulosa cells may become susceptible to RU-486 as a xenotoxic to rapidly express MDR1 for protection against it. These results indicate that MDR1 is expressed in porcine granulosa cells through P4-dependent and -independent regulations.
Collapse
Affiliation(s)
- Hiroaki Fukuda
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | | | | | |
Collapse
|