1
|
Parent AS, Damdimopoulou P, Johansson HKL, Bouftas N, Draskau MK, Franssen D, Fudvoye J, van Duursen M, Svingen T. Endocrine-disrupting chemicals and female reproductive health: a growing concern. Nat Rev Endocrinol 2025:10.1038/s41574-025-01131-x. [PMID: 40404936 DOI: 10.1038/s41574-025-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2025] [Indexed: 05/24/2025]
Abstract
Female fertility and reproductive health depend on a series of developmental steps from embryogenesis through puberty, in addition to the proper functioning of the reproductive system in adulthood. Two important steps are the establishment of the ovarian reserve and development of the hypothalamic-pituitary-ovarian axis. During reproductive years, maintaining an adequate ovarian reserve of follicles as well as balanced neuroendocrine control of reproductive organs is crucial for fertility. Dysregulation of either of these events, during development or in adulthood, can lead to reproductive disorders. Over the past five decades, human fertility rates have declined, whereas the incidence of female reproductive disorders has risen, trends partially linked to environmental factors such as exposure to endocrine-disrupting chemicals (EDCs). Here we outline epidemiological and mechanistic evidence for how EDCs affect the ovarian reserve during early development, its maintenance during adulthood and the establishment of the hypothalamic-pituitary control of puberty and ovulation. Our Review not only reveals strong support for the role of EDC exposure in the development of female reproductive disorders such as abnormal puberty, impaired fertility, premature menopause or polycystic ovarian syndrome, but also highlights knowledge gaps, including the difficulty to prove causality between exposure and human disease manifestation.
Collapse
Affiliation(s)
- Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liege, Belgium.
- Department of Paediatrics, University Hospital Liege, Liege, Belgium.
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | | | - Nora Bouftas
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Monica K Draskau
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Julie Fudvoye
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liege, Belgium
- Department of Paediatrics, University Hospital Liege, Liege, Belgium
| | - Majorie van Duursen
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Sladič M, Smrkolj Š, Kavšek G, Imamovic-Kumalic S, Verdenik I, Virant-Klun I. Bisphenol A in the Urine: Association with Urinary Creatinine, Impaired Kidney Function, Use of Plastic Food and Beverage Storage Products but Not with Serum Anti-Müllerian Hormone in Ovarian Malignancies. Int J Mol Sci 2025; 26:4811. [PMID: 40429952 PMCID: PMC12112075 DOI: 10.3390/ijms26104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Bisphenol A (BPA) is a high-production-volume industrial chemical and component of commonly used plastic products. However, it is also an endocrine-disrupting chemical that can negatively affect human health. It is not yet known whether it is associated with the development of epithelial ovarian cancer (EOC), a severe and highly fatal human disease. Therefore, the purpose of this study was to determine the concentrations of BPA in the urine of women with EOC or epithelial borderline ovarian tumors (EBOTs) using gas chromatography tandem mass spectrometry (GC-MS/MS) and find their possible associations with kidney function at the molecular level, urine and blood biochemical parameters related to metabolism, anti-Müllerian hormone (AMH) (a marker of ovarian reserve/fertility), and lifestyle habits determined via a questionnaire in comparison to healthy controls. The results suggest that the unadjusted or urine-specific-gravity-adjusted BPA levels were significantly increased in women with EOC/EBOT. The unadjusted BPA was significantly positively associated with urinary creatinine (p = 0.007) in all women with EOC/EBOT after adjustment for age, body mass index, and pregnancy using multiple linear regression analysis. This may be related to kidney injury. However, no association was found between urinary BPA and serum AMH levels in women. Women with ovarian malignancies were more exposed to plastic products for storing foods and drinks. Some lifestyle habits, including refilling plastic bottles, correlate with higher urinary BPA levels across the entire cohort of women. When considering EOC or EBOT, it is necessary to consider the potential higher exposure of women to BPA, as reflected in their urine and lifestyle habits.
Collapse
Affiliation(s)
- Mateja Sladič
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia; (M.S.); (Š.S.); (G.K.); (S.I.-K.); (I.V.)
| | - Špela Smrkolj
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia; (M.S.); (Š.S.); (G.K.); (S.I.-K.); (I.V.)
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gorazd Kavšek
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia; (M.S.); (Š.S.); (G.K.); (S.I.-K.); (I.V.)
| | - Senka Imamovic-Kumalic
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia; (M.S.); (Š.S.); (G.K.); (S.I.-K.); (I.V.)
| | - Ivan Verdenik
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia; (M.S.); (Š.S.); (G.K.); (S.I.-K.); (I.V.)
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Cassiani AG, Aloia TPA, Sousa-Vidal ÉK, Podgaec S, Piccinato CDA, Serrano-Nascimento C. Prenatal exposure to nitrate alters uterine morphology and gene expression in adult female F1 generation rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240085. [PMID: 39876961 PMCID: PMC11771761 DOI: 10.20945/2359-4292-2024-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/12/2024] [Indexed: 01/31/2025]
Abstract
Objective Nitrate is ubiquitously found in the environment and is one of the main components of nitrogen fertilizers. Previous studies have shown that nitrate disrupts the reproductive system in aquatic animals, but no study has evaluated the impact of nitrate exposure on the uterus in mammals. This study aimed to evaluate the impact of maternal exposure to nitrate during the prenatal period on uterine morphology and gene expression in adult female F1 rats. Materials and methods Pregnant Wistar rats were either treated with sodium nitrate 20 mg/L or 50 mg/L dissolved in drinking water from the first day of pregnancy until the birth of the offspring or were left untreated. On postnatal day 90, the uteri of female offspring rats were collected for histological and gene expression analyses. Morphometric analyses of the uterine photomicrographs were performed to determine the thickness of the layers of the uterine wall (endometrium, myometrium, and perimetrium) and the number of endometrial glands. Results The highest nitrate dose increased the myometrial thickness of the exposed female rats. Treatment with both nitrate doses reduced the number of endometrial glands compared with no treatment. Additionally, nitrate treatment significantly increased the expression of estrogen receptors and reduced the expression of progesterone receptors in the uterus. Conclusion Our results strongly suggest that prenatal exposure to nitrate programs gene expression and alters the uterine morphology in female F1 rats, potentially increasing their susceptibility to developing uterine diseases during adulthood.
Collapse
Affiliation(s)
- André Gilberto Cassiani
- Hospital Israelita Albert EinsteinSão PauloSPBrasilHospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | | | - Érica Kássia Sousa-Vidal
- Hospital Israelita Albert EinsteinSão PauloSPBrasilHospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Sérgio Podgaec
- Hospital Israelita Albert EinsteinSão PauloSPBrasilHospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Carla de Azevedo Piccinato
- Hospital Israelita Albert EinsteinSão PauloSPBrasilHospital Israelita Albert Einstein, São Paulo, SP, Brasil
- Universidade de São PauloFaculdade de Medicina de Ribeirão PretoDepartamento de Ginecologia e ObstetríciaRibeirão PretoSPBrasilDepartamento de Ginecologia e Obstetrícia da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | |
Collapse
|
4
|
Goswami S, Adhikary S, Bhattacharya S, Agarwal R, Ganguly A, Nanda S, Rajak P. The alarming link between environmental microplastics and health hazards with special emphasis on cancer. Life Sci 2024; 355:122937. [PMID: 39103046 DOI: 10.1016/j.lfs.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Microplastic contamination is a burgeoning environmental issue that poses serious threats to animal and human health. Microplastics enter the human body through nasal, dermal, and oral routes to contaminate multiple organs. Studies have advocated the existence of microplastics in human breast milk, sputum, faeces, and blood. Microplastics can find their ways to the sub-cellular moiety via active and passive approaches. At cellular level, microplastics follow clathrin and caveolae-dependent pathways to invade the sub-cellular environment. These environmental contaminants modulate the epigenetic control of gene expression, status of inflammatory mediators, redox homeostasis, cell-cycle proteins, and mimic the endocrine mediators like estrogen and androgen to fuel carcinogenesis. Furthermore, epidemiological studies have suggested potential links between the exposure to microplastics and the onset of various chronic diseases. Microplastics trigger uncontrolled cell proliferation and ensue tissue growth leading to various cancers affecting the lungs, blood, breasts, prostate, and ovaries. Additionally, such contamination can potentially affect sub-cellular signaling and injure multiple organs. In essence, numerous reports have claimed microplastic-induced toxicity and tumorigenesis in human and model animals. Nonetheless, the underlying molecular mechanism is still elusive and warrants further investigations. This review provides a comprehensive analysis of microplastics, covering their sources, chemistry, human exposure routes, toxicity, and carcinogenic potential at the molecular level.
Collapse
Affiliation(s)
- Sohini Goswami
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Ruchika Agarwal
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India.
| |
Collapse
|
5
|
McWilliams MM, Koohestani F, Jefferson WN, Gunewardena S, Shivashankar K, Wertenberger RA, Williams CJ, Kumar TR, Chennathukuzhi VM. Estrogen receptor alpha mediated repression of PRICKLE1 destabilizes REST and promotes uterine fibroid pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612036. [PMID: 39314474 PMCID: PMC11419101 DOI: 10.1101/2024.09.09.612036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Uterine fibroids (leiomyomas), benign tumors of the myometrial smooth muscle layer, are present in over 75% of women, often causing severe pain, menorrhagia and reproductive dysfunction. The molecular pathogenesis of fibroids is poorly understood. We previously showed that the loss of REST (RE-1 Silencing Transcription factor), a tumor suppressor, in fibroids leads to activation of PI3K/AKT-mTOR pathway. We report here a critical link between estrogen receptor alpha (ERα) and the loss of REST, via PRICKLE1. PRICKLE1 expression is markedly lower in leiomyomas, and the suppression of PRICKLE1 significantly down regulates REST protein levels. Conversely, overexpression of PRICKLE1 resulted in the restoration of REST in cultured primary leiomyoma smooth muscle cells (LSMCs). Crucially, mice exposed neonatally to environmental estrogens, proven risk factors for fibroids, expressed lower levels of PRICKLE1 and REST in the myometrium. Using mice that lack either endogenous estrogen (Lhb -/- mice) or ERα (Esr1 -/- mice), we demonstrate that Prickle1 expression in the myometrium is suppressed by estrogen through ERα. Enhancer of zeste homolog 2 (EZH2) is known to participate in the repression of specific ERα target genes. Uterine leiomyomas express increased levels of EZH2 that inversely correlate with the expression of PRICKLE1. Using chromatin immunoprecipitation, we provide evidence for association of EZH2 with the PRICKLE1 promoter and for hypermethylation of H3K27 within the regulatory region of PRICKLE1 in leiomyomas. Additionally, siRNA mediated knockdown of EZH2 leads to restoration of PRICKLE1 in LSMCs. Collectively, our results identify a novel link between estrogen exposure and PRICKLE1/REST-regulated tumorigenic pathways in leiomyomas.
Collapse
Affiliation(s)
- Michelle M McWilliams
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Faezeh Koohestani
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Kavya Shivashankar
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Riley A Wertenberger
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045
| | - Vargheese M Chennathukuzhi
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
6
|
Liu J, Yu L, Castro L, Yan Y, Bushel P, Scappini E, Dixon D. Induction of fibrosis following exposure to bisphenol A and its analogues in 3D human uterine leiomyoma cultures. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134772. [PMID: 38901254 PMCID: PMC11309888 DOI: 10.1016/j.jhazmat.2024.134772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Bisphenol A (BPA) and its analogues (BPAF, BPS) are ubiquitous environmental contaminants used as plastic additives in various daily life products, with many concerns on their role as environmental estrogens. Uterine leiomyomas (fibroids) are highly prevalent gynecologic tumors with progressive fibrosis. Fibroids are hormone-responsive and may be the target of environmental estrogens. However, the effects of BPA, BPAF, and BPS exposure on uterine fibrosis are largely unknown. Here, we evaluated fibrosis and the crucial role of TGF-beta signaling in human fibroid tumors, the profibrotic effects of BPA, BPAF or BPS in a human 3D uterine leiomyoma (ht-UtLM) in vitro model, and the long-term outcomes of BPAF exposure in rat uterus. In 3D ht-UtLM spheroids, BPA, BPAF, and BPS all promoted cell proliferation and fibrosis by increasing the production of extracellular matrices. Further mechanistic analysis showed the profibrotic effects were induced by TGF-beta signaling activation mainly through SMAD2/3 pathway and crosstalk with multiple non-SMAD pathways. Furthermore, the profibrotic effects of BPAF were supported by observation of uterine fibrosis in vivo in rats following long-term BPAF exposure. Overall, the 3D ht-UtLM spheroid can be an important model for investigating environment-induced fibrosis in uterine fibroids. BPA and its analogues can induce fibrosis via TGF-beta signaling.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Linda Yu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Lysandra Castro
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Yitang Yan
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Pierre Bushel
- BlueRock Therapeutics, New York, NY 10016, United States
| | - Erica Scappini
- Signal Transduction Laboratory, DIR, NIEHS, NIH, Research Triangle Park, NC 27709, United States
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
7
|
Wu HM, Tsai TC, Liu SM, Pai AHY, Chen LH. The Current Understanding of Molecular Mechanisms in Adenomyosis-Associated Infertility and the Treatment Strategy for Assisted Reproductive Technology. Int J Mol Sci 2024; 25:8937. [PMID: 39201621 PMCID: PMC11354813 DOI: 10.3390/ijms25168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Adenomyosis, endometriosis of the uterus, is associated with an increased likelihood of abnormal endometrial molecular expressions thought to impair implantation and early embryo development, resulting in disrupted fertility, including the local effects of sex steroid and pituitary hormones, immune responses, inflammatory factors, and neuroangiogenic mediators. In the recent literature, all of the proposed pathogenetic mechanisms of adenomyosis reduce endometrial receptivity and alter the adhesion molecule expression necessary for embryo implantation. The evidence so far has shown that adenomyosis causes lower pregnancy and live birth rates, higher miscarriage rates, as well as adverse obstetric and neonatal outcomes. Both pharmaceutical and surgical treatments for adenomyosis seem to have a positive impact on reproductive outcomes, leading to improved pregnancy and live birth rates. In addition, adenomyosis has negative impacts on reproductive outcomes in patients undergoing assisted reproductive technology. This association appears less significant after patients follow a long gonadotropin-releasing hormone agonist (GnRHa) protocol, which improves implantation rates. The pre-treatment of GnRHa can also be beneficial before engaging in natural conception attempts. This review aims to discover adenomyosis-associated infertility and to provide patient-specific treatment options.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tian-Chi Tsai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
| | - Shang-Min Liu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
| | - Angel Hsin-Yu Pai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Özden Akkaya Ö, Yağci A, Zik B, Kibria ASMG, Güler S, Çelik S, Altunbaş K. The effect of bisphenol A on the Notch (Notch2 and Jagged2) signaling pathway in the follicular development of the neonatal rat ovary. Biotech Histochem 2024; 99:238-259. [PMID: 39382141 DOI: 10.1080/10520295.2024.2361313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The formation of primordial follicles determines the pool size of follicles in the ovary, and is crucial for female reproductivity. Oocyte nest breakdown, and the formation of primordial follicles, largely depend upon the communication between oocytes and the surrounding pregranulosa cells. The neurogenic locus notch homolog protein (Notch) signaling pathway is the key player for this cell-to-cell communication, and is responsible for primordial folliculogenesis. However, different endocrine disruptors, including bisphenol A (BPA; a plasticizer and a constituent of reusable plastic containers) may affect the Notch signaling pathway, and might induce ovary dysfunction via Notch signaling. Consequently, we investigated the possible influence of BPA treatment on the proportional distribution of the follicular stages, follicle numbers, levels of apoptosis, and on Notch2 and Jagged2 expressions in the ovary. BPA was administered at doses of either 50 µg/kg/day or 50 mg/kg/day, at different time intervals, during neonatal and fetal periods in vivo. After collecting the ovaries from the various experimental groups, follicles were counted, and frequency of apoptosis was determined by TUNEL assay. In addition, Notch2 and Jagged2 expressions were assessed by immunohistochemical staining and qPCR. In summary, BPA treatment affected the follicle numbers and apoptosis level, and Notch2 and Jagged2 expressions varied with follicular stage. It was also observed that these parameters were dose and time dependent with respect to BPA exposure.
Collapse
Affiliation(s)
- Özlem Özden Akkaya
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Artay Yağci
- Department of Histology and Embryology, Milas Veterinary Faculty, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Berrin Zik
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Türkiye
| | - A S M Golam Kibria
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Chattogram, Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sabire Güler
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Türkiye
| | - Sefa Çelik
- Department of Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Türkiye
| | - Korhan Altunbaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| |
Collapse
|
9
|
Chaichian S, Khodabandehloo F, Haghighi L, Govahi A, Mehdizadeh M, Ajdary M, Varma RS. Toxicological Impact of Bisphenol A on Females' Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod Sci 2024; 31:1781-1799. [PMID: 38532232 DOI: 10.1007/s43032-024-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
10
|
Urbanetz LAML, Soares-Junior JM, Dos Santos Simões R, Maciel GAR, Baracat MCP, Baracat EC. Bisphenol A and polycystic ovary syndrome in human: A systematic review. Int J Gynaecol Obstet 2024; 166:190-203. [PMID: 38197560 DOI: 10.1002/ijgo.15349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by anovulation, hyperandrogenism, and polycystic ovarian morphology. Its etiology is uncertain and one of the hypotheses is that environmental factors, such as the bisphenol A (BPA) endocrine disruptor, may be involved. OBJECTIVE To investigate the association between exposure to BPA and PCOS. SEARCH STRATEGY Research was conducted focusing on studies published in English, Portuguese, and Spanish from January 2001 to March 2023 and available in Embase, Medline/PubMed, Rima, Lilacs, Scielo, Google academic, and SCI databases. SELECTION CRITERIA Studies in humans that evaluated the association between exposure to BPA and a diagnosis of PCOS. DATA COLLECTION AND ANALYSIS Following PRISMA guidelines, study characteristics and relevant data were extracted. MAIN RESULTS Selection of 15 case-control and 7 cross-sectional studies with a total of 1682 PCOS patients. The studies were carried out in China, Poland, Turkey, Japan, Greece, Italy, the USA, Iran, Iraq, Egypt, India, Czechia, and Slovakia. A positive relationship between exposure to BPA and PCOS was described in19 studies (1391 [82.70%] of the PCOS patients). The fluids used in the studies were serum, urine, plasma, and follicular fluid. BPA was measured by ELISA and by chromatography (HPLC, HPLC-MS/MS, GC-MS, and GC-MS/MS). Diagnosis of PCOS used Rotterdam criteria in 15, NIH 1999 in 3, AE&PCOS Society in 2, similar to the Rotterdam criteria in 1, and criteria not informed in 1. Androgens were measured in 16 studies; in 12, hyperandrogenism was positively associated with BPA. BPA level was related to body mass index (BMI) in studies. In 15 studies independently of BMI, women with PCOS had higher BPA levels. Carbohydrate metabolism disorders were evaluated in 12 studies and in 6 a positive correlation was found with BPA levels. Lipid profile was evaluated in seven studies and in only one the correlation between lipid profile and BPA levels was present. CONCLUSIONS Exposure to BPA is positively associated with PCOS, mainly with the hyperandrogenism.
Collapse
Affiliation(s)
- Lorena Ana Mercedes Lara Urbanetz
- Gynecology Division, Obstetrics and Gynecology Departmente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José Maria Soares-Junior
- Gynecology Division, Obstetrics and Gynecology Departmente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Dos Santos Simões
- Gynecology Division, Obstetrics and Gynecology Departmente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Arantes Rosa Maciel
- Gynecology Division, Obstetrics and Gynecology Departmente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Candida Pinheiro Baracat
- Gynecology Division, Obstetrics and Gynecology Departmente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edmund Chada Baracat
- Gynecology Division, Obstetrics and Gynecology Departmente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Focaccetti C, Nardozi D, Benvenuto M, Lucarini V, Angiolini V, Carrano R, Scimeca M, Servadei F, Mauriello A, Mancini P, Besharat ZM, Milella M, Migliaccio S, Ferretti E, Cifaldi L, Masuelli L, Palumbo C, Bei R. Bisphenol-A in Drinking Water Accelerates Mammary Cancerogenesis and Favors an Immunosuppressive Tumor Microenvironment in BALB- neuT Mice. Int J Mol Sci 2024; 25:6259. [PMID: 38892447 PMCID: PMC11172679 DOI: 10.3390/ijms25116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Bisphenol-A (BPA), a synthetic compound ubiquitously present in the environment, can act as an endocrine disruptor by binding to both canonical and non-canonical estrogen receptors (ERs). Exposure to BPA has been linked to various cancers, in particular, those arising in hormone-targeted tissues such as the breast. In this study, we evaluated the effect of BPA intake through drinking water on ErbB2/neu-driven cancerogenesis in BALB-neuT mice, transgenic for a mutated ErbB2/neu receptor gene, which reproducibly develop carcinomas in all mammary glands. In this model, BPA accelerated mammary cancerogenesis with an increase in the number of tumors per mouse and a concurrent decrease in tumor-free and overall survival. As assessed by immunohistochemistry, BALB-neuT tumors were ER-negative but expressed high levels of the alternative estrogen receptor GPR30, regardless of BPA exposure. On the other hand, BPA exposure resulted in a marked upregulation of progesterone receptors in preinvasive tumors and of Ki67, CD31, and phosphorylated Akt in invasive tumors. Moreover, based on several infiltration markers of immune cells, BPA favored an immunosuppressive tumor microenvironment. Finally, in vitro cell survival studies performed on a cell line established from a BALB-neuT breast carcinoma confirmed that BPA's impact on cancer progression can be particularly relevant after chronic, low-dose exposure.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds
- Phenols
- Tumor Microenvironment/drug effects
- Female
- Mice
- Mice, Inbred BALB C
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Drinking Water
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Mice, Transgenic
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, Progesterone/metabolism
- Receptors, Progesterone/genetics
- Carcinogenesis/chemically induced
- Carcinogenesis/drug effects
- Endocrine Disruptors/toxicity
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (F.S.); (A.M.)
| | - Patrizia Mancini
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Michele Milella
- Department of Oncology, University of Verona, 37134 Verona, Italy;
| | - Silvia Migliaccio
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (V.L.); (V.A.); (P.M.); (Z.M.B.); (S.M.); (E.F.); (L.M.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (M.B.); (R.C.); (L.C.); (C.P.)
| |
Collapse
|
12
|
Boizet-Bonhoure B, Déjardin S, Girard M, Durix Q, Poulat F, Philibert P. Adenomyotic Lesions Are Induced in the Mouse Uterus after Exposure to NSAID and EE2 Mixtures at Environmental Doses. Int J Mol Sci 2024; 25:2003. [PMID: 38396681 PMCID: PMC10889173 DOI: 10.3390/ijms25042003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to assess the long-term effect of exposure to environmentally relevant doses of non-steroidal anti-inflammatory drugs (NSAIDs; ibuprofen, and diclofenac) and 17β-ethinylestradiol (EE2) on the mouse uterus. NSAID-EE2 mixtures were administered in the drinking water from gestational day 8 until 8 weeks post-birth (i.e., during embryo development, lactation, puberty, and sexual maturity). The incidence of adenomyosis lesions (presence of endometrial glands in the inner myometrium) increased up to 60% in the uterus of 8-week-old exposed females (F1) and to 85% in F2 females (exposed father). Histological analysis revealed aberrant proliferation and apoptosis, vacuolization of epithelial cells, and increased incidence of abnormal glands in the luminal and glandular epithelium in F1 and F2 uteri. Moreover, myofibroblast proportion (alpha-smooth muscle actin (α-SMA) expression analysis) and collagen expression (Picrosirius red stain; a fibrosis hallmark) were increased in F1 and F2 endometrium. Connexin-43 was aberrantly distributed in the endometrial stroma and glands of F1 and F2 uteri. Conversely, uterine 17β-estradiol and progesterone levels were not affected in F1 and F2 females. These findings demonstrated that in mice, chronic exposure to NSAID and EE2 mixtures at environmental doses intergenerationally affects uterine physiology, particularly the endometrium. It may serve as a model to study the pathophysiology of human adenomyosis.
Collapse
Affiliation(s)
- Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, INSERM, Université de Montpellier, 34090 Montpellier, France;
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
| | - Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier UMR9002, 34090 Montpellier, France; (S.D.); (M.G.); (F.P.)
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carémeau, CHU de Nîmes, 30029 Nîmes, France
| |
Collapse
|
13
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
14
|
Zhu H, Cheng Q, Liu J, Jin L, Li Z, Ren A, Wang L. Associations among bisphenol A, its analogs, and chlorinated derivatives in placenta and risk for neural tube defects: A case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165586. [PMID: 37474044 DOI: 10.1016/j.scitotenv.2023.165586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Bisphenol A (BPA) and its analogs such as bisphenol Z (BPZ) are widely used in the production of consumer products, but few studies have investigated the associations among BPA, its analogs, and chlorinated derivatives (collectively, BPs) and risk for NTDs. This study investigated the associations between concentrations of BPs in the placenta and risk for NTDs. This was a case-control study including 122 NTDs and 164 controls. BPs in the placenta were determined using liquid chromatography-tandem mass spectrometry. The associations between BPs and NTD risk were evaluated using conventional logistic regression and weighted quantile sum regression (WQS) models. In the logistic regression, exposure to higher levels of BPA and BPZ was associated with increased NTD risk (odds ratio [OR] = 3.17, 95 % confidence interval [CI], 1.22-8.22; OR = 3.11, 95 % CI, 1.20-8.09, respectively). Meanwhile, a significant dose-response relationship was found between BPA and BPZ concentrations and NTD risk. In the WQS model, a quartile increase in WQS index resulted in 4.34 (95 % CI: 1.69, 11.20) higher odds for NTDs, and BPA and BPZ accounted for most of the weight index in the joint effects of BPs. In conclusion, high levels of BPs in the placenta are associated with increased risk for NTDs, of which BPA and BPZ are important risk factors.
Collapse
Affiliation(s)
- Haiyan Zhu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Qianhui Cheng
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
15
|
Reale E, Hopf NB, Breider F, Grandjean D, Pirard C, Charlier C, Koch HM, Berthet A, Suarez G, Borgatta M. Repeated Human Exposure to Semivolatile Organic Compounds by Inhalation: Novel Protocol for a Nonrandomized Study. JMIR Res Protoc 2023; 12:e51020. [PMID: 37831504 PMCID: PMC10612011 DOI: 10.2196/51020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Semivolatile organic compounds (SVOCs) comprise several different chemical families used mainly as additives in many everyday products. SVOCs can be released into the air as aerosols and deposit on particulate matter during use by dispersion, evaporation, or abrasion. Phthalates are SVOCs of growing concern due to their endocrine-disrupting effects. Human data on the absorption, distribution, metabolism, and excretion (ADME) of these compounds upon inhalation are almost nonexistent. OBJECTIVE The goal of this study is to develop a method for repeated inhalation exposures to SVOCs to characterize their ADME in humans. METHODS We will use diethylhexyl phthalate (DEHP), a major indoor air pollutant, as a model SVOC in this novel protocol. The Swiss official Commission on Ethics in Human Research, Canton de Vaud, approved the study on October 14, 2020 (project-ID 2020-01095). Participants (n=10) will be repeatedly exposed (2 short daily exposures over 4 days) to isotope-labeled DEHP (DEHP-d4) to distinguish administered exposures from background exposures. DEHP-d4 aerosols will be generated with a small, portable, aerosol-generating device. Participants will inhale DEHP-d4-containing aerosols themselves with this device at home. Air concentrations of the airborne phthalates will be less than or equal to their occupational exposure limit (OEL). DEHP-d4 and its metabolites will be quantified in urine and blood before, during, and after exposure. RESULTS Our developed device can generate DEHP-d4 aerosols with diameters of 2.5 μm or smaller and a mean DEHP-d4 mass of 1.4 (SD 0.2) μg per puff (n=6). As of May 2023, we have enrolled 5 participants. CONCLUSIONS The portable device can be used to generate phthalate aerosols for repeated exposure in human studies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/51020.
Collapse
Affiliation(s)
- Elena Reale
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Nancy B Hopf
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Florian Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dominique Grandjean
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Catherine Pirard
- Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
- Laboratory of Clinical, Forensic and Environmental Toxicology, University Hospital of Liege, Liege, Belgium
| | - Corinne Charlier
- Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
- Laboratory of Clinical, Forensic and Environmental Toxicology, University Hospital of Liege, Liege, Belgium
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum, Bochum, Germany
| | - Aurélie Berthet
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Guillaume Suarez
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Myriam Borgatta
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol (Lausanne) 2023; 14:1215353. [PMID: 37854189 PMCID: PMC10579913 DOI: 10.3389/fendo.2023.1215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-β estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Guo X, Liu B, Liu H, Du X, Chen X, Wang W, Yuan S, Zhang B, Wang Y, Guo H, Zhang H. Research advances in identification procedures of endocrine disrupting chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83113-83137. [PMID: 37347330 DOI: 10.1007/s11356-023-27755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are increasingly concerned substance endangering human health and environment. However, there is no unified standard for identifying chemicals as EDCs, which is also controversial internationally. In this review, the procedures for EDC identification in different organizations/countries were described. Importantly, three aspects to be considered in identifying chemical substances as EDCs were summarized, which were mechanistic data, animal experiments, and epidemiological information. The relationships between them were also discussed. To elaborate more clearly on these three aspects of evidence, scientific data on some chemicals including bisphenol A, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane and perchlorate were collected and evaluated. Altogether, the above three chemicals were assessed for interfering with hormones and elaborated their health hazards from macroscopic to microscopic. This review is helpful for standardizing the identification procedure of EDCs.
Collapse
Affiliation(s)
- Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bing Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Wenjun Wang
- College of Nursing, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
18
|
Yu M, Tang Q, Lei B, Yang Y, Xu L. Bisphenol AF Promoted the Growth of Uterus and Activated Estrogen Signaling Related Targets in Various Tissues of Nude Mice with SK-BR-3 Xenograft Tumor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15743. [PMID: 36497816 PMCID: PMC9741110 DOI: 10.3390/ijerph192315743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental estrogens can promote the growth, migration, and invasion of breast cancer. However, few studies evaluate adverse health impacts of environmental estrogens on other organs of breast cancer patients. Therefore, the present study investigated the effects of environmental estrogen bisphenol AF (BPAF) on the main organs of female Balb/cA nude mice with SK-BR-3 xenograft tumor by detecting the organ development and gene expression of targets associated with G protein-coupled estrogen receptor 1 (GPER1)-mediated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinase (MAPK) signaling pathways in hypothalamus, ovary, uterus, liver, and kidney. The results showed that BPAF at 20 mg/kg bw/day markedly increased the uterine weight and the uterine coefficient of nude mice compared to SK-BR-3 bearing tumor control, indicating that BPAF promoted the growth of uterus due to its estrogenic activity. Additionally, BPAF significantly up-regulated the mRNA relative expression of most targets related to nuclear estrogen receptor alpha (ERα) and GPER1-mediated signaling pathways in the hypothalamus, followed by the ovary and uterus, and the least in the liver and kidney, indicating that BPAF activated different estrogen activity related targets in different tissues. In addition, BPAF markedly up-regulated the mRNA expression of GPER1 in all tested tissues, and the molecular docking showed that BPAF could dock into GPER1. Because gene change is an early event of toxicity response, these findings suggested that BPAF might aggravate the condition of breast cancer patients through exerting its estrogenic activity via the GPER1 pathway in various organs.
Collapse
|
19
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
20
|
Prabhu NB, Adiga D, Kabekkodu SP, Bhat SK, Satyamoorthy K, Rai PS. Bisphenol A exposure modulates reproductive and endocrine system, mitochondrial function and cellular senescence in female adult rats: A hallmarks of polycystic ovarian syndrome phenotype. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104010. [PMID: 36334871 DOI: 10.1016/j.etap.2022.104010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) mimics estrogen and consequently suspected to be detrimental to female reproductive system. Biomonitoring confirms the BPA burden in body leading to a complex condition called polycystic ovarian syndrome (PCOS) which is frequently attributed to female infertility. Due to unclear precise molecular pathomechanisms of BPA in PCOS, we intend to examine the molecular mechanisms of the reproductive, endocrine, mitochondrial features, and cellular senescence in BPA-treated rats. We analyzed vaginal smears and ovarian follicles using microscope, assessed sex hormones by ELISA, analyzed BPA target gene expression by semi-quantitative RT-PCR, assessed senescence induction by β-galactosidase staining and immunofluorescence in BPA-treated rats. Our data showed hormonal imbalance, impaired folliculogenesis, abnormal expression patterns of target genes, CDKN2A overexpression and enhanced ROS levels in BPA-treated rats. This study provides insights on the effects of BPA exposure on ovulatory, hormonal, mitochondrial dysfunction, and senescence that benefit in better understanding of PCOS induced by BPA.
Collapse
Affiliation(s)
- Navya B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shashikala K Bhat
- Department of Obstetrics and Gynaecology, Dr. T.M.A Pai Hospital, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576101, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
21
|
Antony S, Antony S, Rebello S, George S, Biju DT, R R, Madhavan A, Binod P, Pandey A, Sindhu R, Awasthi MK. Bioremediation of Endocrine Disrupting Chemicals- Advancements and Challenges. ENVIRONMENTAL RESEARCH 2022; 213:113509. [PMID: 35660566 DOI: 10.1016/j.envres.2022.113509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Endocrine Disrupting Chemicals (EDCs), major group of recalcitrant compounds, poses a serious threat to the health and future of millions of human beings, and other flora and fauna for years to come. A close analysis of various xenobiotics undermines the fact that EDC is structurally diverse chemical compounds generated as a part of anthropogenic advancements as well as part of their degradation. Regardless of such structural diversity, EDC is common in their ultimate drastic effect of impeding the proper functioning of the endocrinal system, basic physiologic systems, resulting in deregulated growth, malformations, and cancerous outcomes in animals as well as humans. The current review outlines an overview of various EDCs, their toxic effects on the ecosystem and its inhabitants. Conventional remediation methods such as physico-chemical methods and enzymatic approaches have been put into action as some form of mitigation measures. However, the last decade has seen the hunt for newer technologies and methodologies at an accelerated pace. Genetically engineered microbial degradation, gene editing strategies, metabolic and protein engineering, and in-silico predictive approaches - modern day's additions to our armamentarium in combating the EDCs are addressed. These additions have greater acceptance socially with lesser dissonance owing to reduced toxic by-products, lower health trepidations, better degradation, and ultimately the prevention of bioaccumulation. The positive impact of such new approaches on controlling the menace of EDCs has been outlaid. This review will shed light on sources of EDCs, their impact, significance, and the different remediation and bioremediation approaches, with a special emphasis on the recent trends and perspectives in using sustainable approaches for bioremediation of EDCs. Strict regulations to prevent the release of estrogenic chemicals to the ecosystem, adoption of combinatorial methods to remove EDC and prevalent use of bioremediation techniques should be followed in all future endeavors to combat EDC pollution. Moreover, the proper development, growth and functioning of future living forms relies on their non-exposure to EDCs, thus remediation of such chemicals present even in nano-concentrations should be addressed gravely.
Collapse
Affiliation(s)
- Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, 689 101, Kerala, India
| | - Sham Antony
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Sharrel Rebello
- School of Food Science & Technology, Mahatma Gandhi University, Kottayam, India
| | - Sandhra George
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Devika T Biju
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Reshmy R
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689 122, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum, 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505, Kerala, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
22
|
Tsolova AO, Aguilar RM, Maybin JA, Critchley HOD. Pre-clinical models to study abnormal uterine bleeding (AUB). EBioMedicine 2022; 84:104238. [PMID: 36081283 PMCID: PMC9465267 DOI: 10.1016/j.ebiom.2022.104238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Abnormal Uterine Bleeding (AUB) is a common debilitating condition that significantly reduces quality of life of women across the reproductive age span. AUB creates significant morbidity, medical, social, and economic problems for women, their families, workplace, and health services. Despite the profoundly negative effects of AUB on public health, advancement in understanding the pathophysiology of AUB and the discovery of novel effective therapies is slow due to lack of reliable pre-clinical models. This review discusses currently available laboratory-based pre-clinical scientific models and how they are used to study AUB. Human and animal in vitro, ex vivo, and in vivo models will be described along with advantages and limitations of each method.
Collapse
|
23
|
Benjamin K, Marquez CM, Morta M, Reyes EM, Aragones L, Velarde M. Bisphenol S Increases Cell Number and Stimulates Migration of Endometrial Epithelial Cells. J ASEAN Fed Endocr Soc 2022; 38:13-22. [PMID: 37234927 PMCID: PMC10207871 DOI: 10.15605/jafes.037.s7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 09/08/2023] Open
Abstract
OBJECTIVE To determine whether bisphenol S (BPS), a common substitute for bisphenol A (BPA), induces cell proliferation and migration in human endometrial epithelial cells (Ishikawa) and adult mouse uterine tissues. METHODOLOGY Human endometrial Ishikawa cells were exposed to low doses of BPS (1 nM and 100 nM) for 72 hours. Cell proliferation was assessed through the viability assays MTT and CellTiter-Glo®. Wound healing assays were also used to evaluate the migration potential of the cell line. The expression of genes related to proliferation and migration was also determined. Similarly, adult mice were exposed to BPS at a dose of 30 mg/kg body weight/day for 21 days, after which, the uterus was sent for histopathologic assessment. RESULTS BPS increased cell number and stimulated migration in Ishikawa cells, in association with the upregulation of estrogen receptor beta (ESR2) and vimentin (VIM). In addition, mice exposed to BPS showed a significantly higher mean number of endometrial glands within the endometrium. CONCLUSION Overall, in vitro and in vivo results obtained in this study showed that BPS could significantly promote endometrial epithelial cell proliferation and migration, a phenotype also observed with BPA exposure. Hence, the use of BPS in BPA-free products must be reassessed, as it may pose adverse reproductive health effects to humans.
Collapse
Affiliation(s)
- Kimberly Benjamin
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila
- Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Cielo Mae Marquez
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Madeleine Morta
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Emmanuel Marc Reyes
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lemnuel Aragones
- Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Michael Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
24
|
Jala A, Varghese B, Kaur G, Rajendiran K, Dutta R, Adela R, Borkar RM. Implications of endocrine-disrupting chemicals on polycystic ovarian syndrome: A comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58484-58513. [PMID: 35778660 DOI: 10.1007/s11356-022-21612-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex multifactorial disorder of unknown pathogenesis in which genetic and environmental factors contribute synergistically to its phenotypic expressions. Endocrine-disrupting chemicals (EDCs), a group of widespread pollutants freely available in the environment and consumer products, can interfere with normal endocrine signals. Extensive evidence has shown that EDCs, environmental contributors to PCOS, can frequently induce ovarian and metabolic abnormalities at low doses. The current research on environmental EDCs suggests that there may be link between EDC exposure and PCOS, which calls for more human bio-monitoring of EDCs using highly sophisticated analytical techniques for the identification and quantification and to discover the underlying pathophysiology of the disease. This review briefly elaborated on the general etiology of PCOS and listed various epidemiological and experimental data from human and animal studies correlating EDCs and PCOS. This review also provides insights into various analytical tools and sample preparation techniques for biomonitoring studies for PCOS risk assessment. Furthermore, we highlight the role of metabolomics in disease-specific biomarker discovery and its use in clinical practice. It also suggests the way forward to integrate biomonitoring studies and metabolomics to underpin the role of EDCs in PCOS pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Gurparmeet Kaur
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | | | - Ratul Dutta
- Down Town Hospital, Guwahati, Assam, 781106, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, India.
| |
Collapse
|
25
|
Iuele H, Bucciarelli A, Ling N. Novel hyphenation of DGT in-situ passive sampling with YES assay to ascertain the potency of emerging endocrine disruptors in water systems in New Zealand. WATER RESEARCH 2022; 219:118567. [PMID: 35580392 DOI: 10.1016/j.watres.2022.118567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
This study represents the first attempt to investigate selected estrogenic compounds that include 17α-ethynylestradiol (EE2), 17β-estradiol (E2) bisphenol A (BPA), and bisphenol AF (BPAF) along the drinkable water, from river-to-tap, and wastewater, from effluent-to-treated wastewater, treatment processes of the Hamilton City Council and the monitoring of the freshwater, from source-to-outfall, of the Waikato River in New Zealand. This was accomplished by the adoption of a novel combination of diffusive gradients in thin films (DGTs) in-situ passive sampling coupled with high-performance liquid chromatography/mass spectrometry analysis (HPLC/MS) and the Yeast Estrogen Screen (YES). Estradiol equivalency quantities, integrated in time, were evaluated theoretically (cEEQ) by DGT-HPLC/MS and experimentally (EEQ) by DGT-YES assay. cEEQ and EEQ highlighted that primary treatments are not suitable for estrogens and bisphenolic plastics removal both at drinkable and wastewater treatment plants in Hamilton where they worsen the water quality in terms of estrogenicity making these pollutants more available in the water phase. All downstream sites monitored along the Waikato River showed higher cEEQ and EEQ, moreover the Waikato River water quality showed a moderate worsening moving from Taupo (source) to Tuakau (outfall). The most polluted sites were downstream of Hamilton city and Huntly township wastewater treatment plants that serve the main conurbations in the area. cEEQ and EEQ generally showed good agreement at low concentrations but differed substantially at more polluted sites where cEEQ consistently underestimated estrogenic potency, possibly due to DGT accumulation of estrogenic compounds not quantified by HPLC/MS.
Collapse
Affiliation(s)
- Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce 73100, Italy; School of Science, Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Alessio Bucciarelli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce 73100, Italy
| | - Nicholas Ling
- School of Science, Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
| |
Collapse
|
26
|
Abstract
Pluripotent, very small embryonic-like stem cells (VSELs) and the 'progenitors' endometrial stem cells (EnSCs) along with associated molecular changes in endometrial cancer, that developed seven months after neonatal exposure to estradiol in one of the sixty mice, were studied in the present study. Endocrine disruption affected both endometrium and myometrium, there was accumulation of endometrial fluid and significant hyperplasia. Disrupted endometrial-myometrial junction resulted in mobilization of myometrial cells into endometrium and epithelial and stromal cells into myometrium suggestive of adenomyosis. Markers specific for VSELs/ EnSCs (OCT-4, NANOG, SSEA-1, SCA-1, c-KIT) showed increased expression in uterine sections and marked upregulation of corresponding transcripts (Oct-4A, Oct-4, Sox-2, Nanog, Sca-1, c-Kit) was noted in RNA extracted from both uterine tissue and stem cells enriched from endometrial fluid. Hormonal receptors (ER-α, ER-β, PR, FSHR) were upregulated in both tumor sections and in endometrial fluid. ER-β and FSHR (Fshr3) expression was prominent suggesting a major role in endometrial cancer. Cancer cells showed global hypomethylation (reduced expression of 5-methyl cytosine), reduced expression of tumor suppressor gene (PTEN) and increased expression of cancer stem cells marker (CD166) which suggested dysregulation and aberrant oncogenic events. Increased expression of PCNA, Ki67, SOX-9 suggested excessive proliferation and hyperplasia which are predominant signs of endometrial cancer. Results suggest that VSELs increase in numbers and possibly transform into cancer stem cells (co-express CD166 and OCT-4) in endometrial cancer. Expression of OCT-4, CD133, ALDHA1 and CD166 in side-population cells from human endometrial cancer samples suggests a possible role of VSELs in human endometrial cancer as well.
Collapse
|
27
|
Unveiling the Pathogenesis of Adenomyosis through Animal Models. J Clin Med 2022; 11:jcm11061744. [PMID: 35330066 PMCID: PMC8953406 DOI: 10.3390/jcm11061744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background: Adenomyosis is a common gynecological disorder traditionally viewed as “elusive”. Several excellent review papers have been published fairly recently on its pathogenesis, and several theories have been proposed. However, the falsifiability, explanatory power, and predictivity of these theories are often overlooked. Since adenomyosis can occur spontaneously in rodents and many other species, the animal models may help us unveil the pathogenesis of adenomyosis. This review critically tallies experimentally induced models published so far, with a particular focus on their relevance to epidemiological findings, their possible mechanisms of action, and their explanatory and predictive power. Methods: PubMed was exhaustively searched using the phrase “adenomyosis and animal model”, “adenomyosis and experimental model”, “adenomyosis and mouse”, and “adenomyosis and rat”, and the resultant papers were retrieved, carefully read, and the resultant information distilled. All the retrieved papers were then reviewed in a narrative manner. Results: Among all published animal models of adenomyosis, the mouse model of adenomyosis induced by endometrial–myometrial interface disruption (EMID) seems to satisfy the requirements of falsifiability and has the predictive capability and also Hill’s causality criteria. Other theories only partially satisfy Hill’s criteria of causality. In particular, animal models of adenomyosis induced by hyperestrogenism, hyperprolactinemia, or long-term exposure to progestogens without much epidemiological documentation and adenomyosis is usually not the exclusive uterine pathology consequent to those induction procedures. Regardless, uterine disruption appears to be a necessary but not sufficient condition for causing adenomyosis. Conclusions: EMID is, however, unlikely the sole cause for adenomyosis. Future studies, including animal studies, are warranted to understand how and why in utero and/or prenatal exposure to elevated levels of estrogen or estrogenic compounds increases the risk of developing adenomyosis in adulthood, to elucidate whether prolactin plays any role in its pathogenesis, and to identify sufficient condition(s) that cause adenomyosis.
Collapse
|
28
|
Zhang H, Li Y, Zhang X, Chen W, Liang Q, Li C, Knibbs LD, Huang C, Wang Q. Potential occupational exposure of parents to endocrine disrupting chemicals, adverse birth outcomes, and the modification effects of multi-vitamins supplement and infant sex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113314. [PMID: 35189520 DOI: 10.1016/j.ecoenv.2022.113314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Maternal occupational exposure to endocrine disrupting chemicals (EDCs) may have adverse effect on birth outcomes. However, little is known about paternal EDCs exposure and the combined effect of parental exposure on birth outcomes. OBJECTIVES To assess the effects of both maternal and paternal occupational EDCs exposure on adverse birth outcomes, and further explore if multi-vitamins supplement and infant sex modify the association. METHODS We conducted a prospective cohort study of 5421 mother-father-newborn groups in Guangzhou, China. A questionnaire informed by a job exposure matrix (JEM) was applied to collect parental occupational EDCs exposure based on the type of work performed. We used logistic regression to estimate association between parental EDCs exposure and birth outcomes (including preterm birth (PTB), low birth weight (LBW), birth defects and congenital heart defects (CHD)). Stratified analyses and Cochran Q tests were performed to assess the modifying effect of maternal multi-vitamins supplement use and infant sex. RESULTS Compared with mothers unexposed, we found that mothers those exposed to EDCs were associated with increased odds of birth defects (aOR=1.70, 95% confidence interval (CI): 1.10-2.62), especially for those exposed for > 1.5 years (aOR= 3.00, 95% CIs: 1.78-5.03), or those with directly occupational exposed to EDCs (aOR= 2.94, 95% CIs: 1.72-5.04). Maternal exposure for > 1.5 years and direct exposure increased the risk of CHD, with aORs of 2.47 (1.21-5.02) and 2.79 (1.37-5.69), respectively. Stronger adverse effects were also observed when mothers and fathers were both exposed to EDCs. Paternal occupational EDCs exposure and exposure ≤ 1.5 years was associated with increased odds of LBW, with aORs of 2.14 (1.63-2.79) and 1.54 (1.10-2.15), respectively. When stratified by multi-vitamins supplement and infant sex, we observed slightly stronger effects for maternal exposure on birth defects/CHD as well as paternal EDCs exposure on PTB and LBW, among those without multi-vitamins supplement and among male babies, although the modification effects were not significant. CONCLUSION Maternal exposure to EDCs was associated with greater odds of birth defects and CHD, while paternal exposure was mainly associated with greater odds of LBW. These effects tend to be stronger among mothers without multi-vitamins supplement and among male babies.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanqiu Li
- Guangzhou Panyu Maternal Child Health Hospital (Guangzhou Panyu District He Xian Memorial Hospital), Guangzhou, China
| | - Xiaoxin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weiyi Chen
- Guangzhou Panyu Maternal Child Health Hospital (Guangzhou Panyu District He Xian Memorial Hospital), Guangzhou, China
| | - Qianhong Liang
- Guangzhou Panyu Maternal Child Health Hospital (Guangzhou Panyu District He Xian Memorial Hospital), Guangzhou, China
| | - Changchang Li
- Department of Sexually Transmitted Disease Prevention and Control, Dermatology Hospital of Southern Medical University, Guangzhou, China; Institute for Global Health and Sexually Transmitted Infections, Southern Medical University, Guangzhou, China
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, NSW 2006, Australia
| | - Cunrui Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Liu J, Yu L, Castro L, Yan Y, Clayton NP, Bushel P, Flagler ND, Scappini E, Dixon D. Short-term tetrabromobisphenol A exposure promotes fibrosis of human uterine fibroid cells in a 3D culture system through TGF-beta signaling. FASEB J 2022; 36:e22101. [PMID: 35032343 PMCID: PMC8852695 DOI: 10.1096/fj.202101262r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3 µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.
Collapse
Affiliation(s)
- Jingli Liu
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Linda Yu
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Lysandra Castro
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Yitang Yan
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Natasha P. Clayton
- Cellular & Molecular Pathogenesis BranchDNTP NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Pierre Bushel
- Biostatistics & Computational Biology Branch, Division of Intramural Research (DIR)NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Norris D. Flagler
- Cellular & Molecular Pathogenesis BranchDNTP NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Erica Scappini
- Signal Transduction Laboratory, DIRNIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Darlene Dixon
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
30
|
Stephens VR, Rumph JT, Ameli S, Bruner-Tran KL, Osteen KG. The Potential Relationship Between Environmental Endocrine Disruptor Exposure and the Development of Endometriosis and Adenomyosis. Front Physiol 2022; 12:807685. [PMID: 35153815 PMCID: PMC8832054 DOI: 10.3389/fphys.2021.807685] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 01/27/2023] Open
Abstract
Women with endometriosis, the growth of endometrial glands and stroma outside the uterus, commonly also exhibit adenomyosis, the growth of endometrial tissues within the uterine muscle. Each disease is associated with functional alterations in the eutopic endometrium frequently leading to pain, reduced fertility, and an increased risk of adverse pregnancy outcomes. Although the precise etiology of either disease is poorly understood, evidence suggests that the presence of endometriosis may be a contributing factor to the subsequent development of adenomyosis as a consequence of an altered, systemic inflammatory response. Herein, we will discuss the potential role of exposure to environmental toxicants with endocrine disrupting capabilities in the pathogenesis of both endometriosis and adenomyosis. Numerous epidemiology and experimental studies support a role for environmental endocrine disrupting chemicals (EDCs) in the development of endometriosis; however, only a few studies have examined the potential relationship between toxicant exposures and the risk of adenomyosis. Nevertheless, since women with endometriosis are also frequently found to have adenomyosis, discussion of EDC exposure and development of each of these diseases is relevant. We will discuss the potential mechanisms by which EDCs may act to promote the co-development of endometriosis and adenomyosis. Understanding the disease-promoting mechanisms of environmental toxicants related to endometriosis and adenomyosis is paramount to designing more effective treatment(s) and preventative strategies.
Collapse
Affiliation(s)
- Victoria R. Stephens
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jelonia T. Rumph
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, United States
| | - Sharareh Ameli
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kaylon L. Bruner-Tran
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kevin G. Osteen
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
31
|
Guerrero Schimpf M, Milesi MM, Zanardi MV, Varayoud J. Disruption of developmental programming with long-term consequences after exposure to a glyphosate-based herbicide in a rat model. Food Chem Toxicol 2022; 159:112695. [PMID: 34813928 DOI: 10.1016/j.fct.2021.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Glyphosate-based herbicides (GBHs) have been associated with endocrine disrupting effects on reproductive organs. We examined whether postnatal exposure to GBH affects developmental programming of the uterus with long-term consequences. Female Wistar pups received vehicle (control) or GBH (2 mg of glyphosate/kg/day) from postnatal day (PND) 1 to PND7, where the developing uterus is highly sensitive to endocrine disruption. Short-, mid- and long-term effects were evaluated on PND8, PND120 and PND600, respectively. GBH induced hyperplasia and epigenetic alterations in the uterus of neonatal females (PND8). DNA hypermethylation, enrichment of H3K9me3 and reductions of H3K27me3 at regulatory regions of the morphoregulatory gene Hoxa10 resulted in gene downregulation. In young adult females (PND120), GBH increased 17β-estradiol (E2) and decreased progesterone (P4) serum levels, altering estrous cyclicity. Aged females (PND600) exposed to GBH developed leiomyoma and pre-neoplastic glandular lesions in the uterus. Vaginal rhabdomyosarcoma and intrahepatic bile duct adenoma were also observed. In conclusion, neonatal exposure to GBH altered the expression and induced hypermethylation of the Hoxa10 gene in uterine tissue at early life, and increased E2/P4 ratio serum level at middle-age. We propose that epigenetic reprogramming of Hoxa10 in association with hormonal imbalance could be among the possible mechanisms underlying the long-term adverse effects detected in GBH-exposed rats.
Collapse
Affiliation(s)
- Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente Del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina.
| | - María M Milesi
- Instituto de Salud y Ambiente Del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - María Victoria Zanardi
- Instituto de Salud y Ambiente Del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente Del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina
| |
Collapse
|
32
|
Zulkifli S, Rahman AA, Kadir SHSA, Nor NSM. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 2021; 180:3111-3127. [PMID: 33893858 DOI: 10.1007/s00431-021-04085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children's health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans. What is known: • Very limited reviews are available on how BPA adversely affects children's health. • Previous papers mainly covered two systems in children. What is new: • Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives. • Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia. .,Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| |
Collapse
|
33
|
Mentor A, Wänn M, Brunström B, Jönsson M, Mattsson A. Bisphenol AF and Bisphenol F Induce Similar Feminizing Effects in Chicken Embryo Testis as Bisphenol A. Toxicol Sci 2021; 178:239-250. [PMID: 33010167 PMCID: PMC7706397 DOI: 10.1093/toxsci/kfaa152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The plastic component bisphenol A (BPA) impairs reproductive organ development in various experimental animal species. In birds, effects are similar to those caused by other xenoestrogens. Because of its endocrine disrupting activity, BPA is being substituted with other bisphenols in many applications. Using the chicken embryo model, we explored whether the BPA alternatives bisphenol AF (BPAF), bisphenol F (BPF), and bisphenol S (BPS) can induce effects on reproductive organ development similar to those induced by BPA. Embryos were exposed in ovo from embryonic day 4 (E4) to vehicle, BPAF at 2.1, 21, 210, and 520 nmol/g egg, or to BPA, BPF, or BPS at 210 nmol/g egg and were dissected on embryonic day 19. Similar to BPA, BPAF and BPF induced testis feminization, manifested as eg testis-size asymmetry and ovarian-like cortex in the left testis. In the BPS-group, too few males were alive on day 19 to evaluate any effects on testis development. We found no effects by any treatment on ovaries or Müllerian ducts. BPAF and BPS increased the gallbladder-somatic index and BPAF, BPF and BPS caused increased embryo mortality. The overall lowest-observed-adverse-effect level for BPAF was 210 nmol/g egg based on increased mortality, increased gallbladder-somatic index, and various signs of testis feminization. This study demonstrates that the BPA replacements BPAF, BPF, and BPS are embryotoxic and suggests that BPAF is at least as potent as BPA in inducing estrogen-like effects in chicken embryos. Our results support the notion that these bisphenols are not safe alternatives to BPA.
Collapse
Affiliation(s)
- Anna Mentor
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Mimmi Wänn
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| |
Collapse
|
34
|
Zaid SSM, Othman S, Kassim NM. Protective role of Mas Cotek (Ficus deltoidea) against the toxic effects of bisphenol A on morphology and sex steroid receptor expression in the rat uterus. Biomed Pharmacother 2021; 140:111757. [PMID: 34044283 DOI: 10.1016/j.biopha.2021.111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Numerous scientific studies have found that young women are at a high risk of reproductive infertility due to their routine exposure to numerous bisphenol A (BPA) products. This risk is highly associated with the production of reactive oxygen species from BPA products. Ficus deltoidea, which has strong antioxidant properties, was selected as a potential protective agent to counter the detrimental effects of BPA in the rat uterus. METHODS Female Sprague-Dawley rats were allocated into four groups (n = 8) as follows: (i) the Normal Control group (NC), (ii) the BPA-exposed group (PC), (iii) the group concurrently treated with BPA and F. deltoidea (FC) and (iv) the group treated with F. deltoidea alone (F). RESULTS After 6 weeks of concurrent treatment with F. deltoidea, uterine abnormalities in the BPA-exposed rats showed a significant improvement. Specifically, the size of stromal cells increased; interstitial spaces between stromal cells expanded; the histology of the glandular epithelium and the myometrium appeared normal and mitotic figures were present. The suppressive effects of BPA on the expression levels of sex steroid receptors (ERα and ERβ) and the immunity gene C3 were significantly normalised by F. deltoidea treatment. The role of F. deltoidea as an antioxidant agent was proven by the significant reduction in malondialdehyde level in BPA-exposed rats. Moreover, in BPA-exposed rats, concurrent treatment with F. deltoidea could normalise the level of the gonadotropin hormone, which could be associated with an increase in the percentage of rats with a normal oestrous cycle. CONCLUSION F. deltoidea has the potential to counter the toxic effects of BPA on the female reproductive system. These protective effects might be due to the phytochemical properties of F. deltoidea. Therefore, future study is warranted to identify the bioactive components that contribute to the protective effects of F. deltoidea.
Collapse
Affiliation(s)
- Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Normadiah M Kassim
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
Abstract
One of the most commonly produced industrial chemicals worldwide, bisphenol A (BPA), is used as a precursor in plastics, resins, paints, and many other materials. It has been proved that BPA can cause long-term adverse effects on ecosystems and human health due to its toxicity as an endocrine disruptor. In this study, we developed an integrated MnO2/UV/persulfate (PS) process for use in BPA photocatalytic degradation from water and examined the reaction mechanisms, degradation pathways, and toxicity reduction. Comparative tests using MnO2, PS, UV, UV/MnO2, MnO2/PS, and UV/PS processes were conducted under the same conditions to investigate the mechanism of BPA catalytic degradation by the proposed MnO2/UV/PS process. The best performance was observed in the MnO2/UV/PS process in which BPA was completely removed in 30 min with a reduction rate of over 90% for total organic carbon after 2 h. This process also showed a stable removal efficiency with a large variation of pH levels (3.6 to 10.0). Kinetic analysis suggested that 1O2 and SO4•− played more critical roles than •OH for BPA degradation. Infrared spectra showed that UV irradiation could stimulate the generation of –OH groups on the MnO2 photocatalyst surface, facilitating the PS catalytic degradation of BPA in this process. The degradation pathways were further proposed in five steps, and thirteen intermediates were identified by gas chromatography-mass spectrometry. The acute toxicity was analyzed during the treatment, showing a slight increase (by 3.3%) in the first 30 min and then a decrease by four-fold over 2 h. These findings help elucidate the mechanism and pathways of BPA degradation and provide an effective PS catalytic strategy.
Collapse
|
36
|
Philibert P, Déjardin S, Pirot N, Pruvost A, Nguyen AL, Bernex F, Poulat F, Boizet-Bonhoure B. In the mouse, prostaglandin D2 signalling protects the endometrium against adenomyosis. Mol Hum Reprod 2021; 27:6225287. [PMID: 33851217 DOI: 10.1093/molehr/gaab029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/17/2021] [Indexed: 12/29/2022] Open
Abstract
Adenomyosis is characterised by epithelial gland and mesenchymal stroma invasion of the uterine myometrium. Adenomyosis is an oestrogen-dependent gynaecological disease in which a number of factors, such as inflammatory molecules, prostaglandins (PGs), angiogenic factors, cell proliferation and extracellular matrix remodelling proteins, also play a role as key disease mediators. In this study, we used mice lacking both lipocalin and hematopoietic-PG D synthase (L- and H-Pgds) genes in which PGD2 is not produced to elucidate PGD2 roles in the uterus. Gene expression studied by real-time PCR and hormone dosages performed by ELISA or liquid chromatography tandem mass spectroscopy in mouse uterus samples showed that components of the PGD2 signalling pathway, both PGDS and PGD2-receptors, are expressed in the mouse endometrium throughout the oestrus cycle with some differences among uterine compartments. We showed that PGE2 production and the steroidogenic pathway are dysregulated in the absence of PGD2. Histological analysis of L/H-Pgds-/- uteri, and immunohistochemistry and immunofluorescence analyses of proliferation (Ki67), endothelial cell (CD31), epithelial cell (pan-cytokeratin), myofibroblast (α-SMA) and mesenchymal cell (vimentin) markers, identify that 6-month-old L/H-Pgds-/- animals developed adenomyotic lesions, and that disease severity increased with age. In conclusion, this study suggests that the PGD2 pathway has major roles in the uterus by protecting the endometrium against adenomyosis development. Additional experiments, using for instance transcriptomic approaches, are necessary to fully determine the molecular mechanisms that lead to adenomyosis in L/H-Pgds-/- mice and to confirm whether this strain is an appropriate model for studying the human disease.
Collapse
Affiliation(s)
- Pascal Philibert
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France.,Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, Nîmes, France
| | - Stéphanie Déjardin
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier IRCM, Université de Montpellier, ICM, INSERM, Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alain Pruvost
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France
| | - Anvi Laetitia Nguyen
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France
| | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier IRCM, Université de Montpellier, ICM, INSERM, Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Francis Poulat
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
37
|
Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19643-19663. [PMID: 33666848 PMCID: PMC8099816 DOI: 10.1007/s11356-021-13071-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 04/12/2023]
Abstract
Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jacinta Correia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
38
|
Soto AM, Schaeberle CM, Sonnenschein C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 2021; 17:247-256. [PMID: 33514909 PMCID: PMC9662687 DOI: 10.1038/s41574-020-00460-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between 'science for its own sake' and 'regulatory science' and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: "Nothing is more practical than a good theory".
Collapse
Affiliation(s)
- Ana M Soto
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA.
| | - Cheryl M Schaeberle
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| |
Collapse
|
39
|
Evaluation of Development of the Rat Uterus as a Toxicity Biomarker. Methods Mol Biol 2021. [PMID: 33423230 DOI: 10.1007/978-1-0716-1091-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The developing uterus is highly sensitive to a brief exposure to different substances, in particular those with endocrine-disrupting activity. Thus, exposure to environmental, nutritional, chemical, and other xenobiotic factors affecting signaling events during critical organizational periods can alter the normal course of uterine development with lasting consequences. In this chapter, we provide an experimental protocol to evaluate the development of the rat uterus as a toxicity biomarker at two different developmental time points: (1) the neonatal period, on postnatal day (PND) 8, and (2) the prepubertal period, on PND21. In this experimental approach, we propose to assess: (1) uterine morphology and cytodifferentiation, (2) uterine cell proliferation, and (3) the expression of proteins involved in uterine organogenetic differentiation. All these morphological and molecular markers are useful tools to determine the consequences of exposure to toxicants with the potential to disrupt the uterine development.
Collapse
|
40
|
Prolonged atrazine exposure beginning in utero and adult uterine morphology in mice. J Dev Orig Health Dis 2021; 13:39-48. [PMID: 33781367 DOI: 10.1017/s2040174421000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Through drinking water, humans are commonly exposed to atrazine, a herbicide that acts as an endocrine and metabolic disruptor. It interferes with steroidogenesis, including promoting oestrogen production and altering cell metabolism. However, its precise impact on uterine development remains unknown. This study aimed to determine the effect of prolonged atrazine exposure on the uterus. Pregnant mice (n = 5/group) received 5 mg/kg body weight/day atrazine or DMSO in drinking water from gestational day 9.5 until weaning. Offspring continued to be exposed until 3 or 6 months of age (n = 5-9/group), when uteri were collected for morphological and molecular analyses and steroid quantification. Endometrial hyperplasia and leiomyoma were evident in the uteri of atrazine-exposed mice. Uterine oestrogen concentration, oestrogen receptor expression, and localisation were similar between groups, at both ages (P > 0.1). The expression and localisation of key epithelial-to-mesenchymal transition (EMT) genes and proteins, critical for tumourigenesis, remained unchanged between treatments, at both ages (P > 0.1). Hence, oestrogen-mediated changes to established EMT markers do not appear to underlie abnormal uterine morphology evident in atrazine exposure mice. This is the first report of abnormal uterine morphology following prolonged atrazine exposure starting in utero, it is likely that the abnormalities identified would negatively affect female fertility, although mechanisms remain unknown and require further study.
Collapse
|
41
|
Siddique MAB, Harrison SM, Monahan FJ, Cummins E, Brunton NP. Bisphenol A and Metabolites in Meat and Meat Products: Occurrence, Toxicity, and Recent Development in Analytical Methods. Foods 2021; 10:foods10040714. [PMID: 33801667 PMCID: PMC8066211 DOI: 10.3390/foods10040714] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bisphenol A (BPA) is a commonly used compound in many industries and has versatile applications in polycarbonate plastics and epoxy resins production. BPA is classified as endocrine-disrupting chemical which can hamper fetal development during pregnancy and may have long term negative health outcomes in humans. Dietary sources, main route of BPA exposure, can be contaminated by the migration of BPA into food during processing. The global regulatory framework for using this compound in food contact materials is currently not harmonized. This review aims to outline, survey, and critically evaluate BPA contamination in meat products, including level of BPA and/or metabolites present, exposure route, and recent advancements in the analytical procedures of these compounds from meat and meat products. The contribution of meat and meat products to the total dietary exposure of BPA ranges between 10 and 50% depending on the country and exposure scenario considered. From can lining materials of meat products, BPA migrates towards the solid phase resulting higher BPA concentration in solid phase than the liquid phase of the same can. The analytical procedure is comprised of meat sample pre-treatment, followed by cleaning with solid phase extraction (SPE), and chromatographic analysis. Considering several potential sources of BPA in industrial and home culinary practices, BPA can also accumulate in non-canned or raw meat products. Very few scientific studies have been conducted to identify the amount in raw meat products. Similarly, analysis of metabolites and identification of the origin of BPA contamination in meat products is still a challenge to overcome.
Collapse
Affiliation(s)
- Md Abu bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Sabine M. Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Frank J. Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Nigel P. Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
- Correspondence: ; Tel.: +353-017167603
| |
Collapse
|
42
|
Liu Q. Effects of Environmental Endocrine-Disrupting Chemicals on Female Reproductive Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:205-229. [PMID: 33523436 DOI: 10.1007/978-981-33-4187-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmental endocrine-disrupting chemicals (EDCs) are xenobiotic compounds that are frequently contacted in daily life. With the species and quantity of substances created and utilized by human beings significantly surpassing the self-purification capacity of nature, a large number of hazardous substances are enriched in the human body through the respiratory tract, digestive tract, and skin. Some of these compounds cause many problems endangering female reproductive health by simulating/antagonizing endogenous hormones or affecting the synthesis, metabolism, and bioavailability of endogenous hormones, including reproductive disorders, fetal birth defects, fetal developmental abnormalities, endocrine and metabolic disorders, and even gynecological malignancies. Therefore, the study of the relationship between environmental EDCs and female reproductive diseases and related mechanisms is of considerable significance to women, children health care, and improve the quality of the population.
Collapse
Affiliation(s)
- Qicai Liu
- Center for Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
43
|
Yang Y, Huang W, Yuan L. Effects of Environment and Lifestyle Factors on Premature Ovarian Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:63-111. [PMID: 33523430 DOI: 10.1007/978-981-33-4187-6_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Premature ovarian insufficiency (POI) or primary ovarian failure is defined as a cessation of the menstrual cycle in women younger than 40 years old. It is strictly defined as more than 4 months of oligomenorrhea or amenorrhea in a woman <40 years old, associated with at least two follicle-stimulating hormone (FSH) levels >25 U/L in the menopausal range, detected more than 4 weeks apart. It is estimated that POI was affected 1 and 2% of women. Although 80% of POI cases are of unknown etiology, it is suggested that genetic disorder, autoimmune origin, toxins, and environmental factors, as well as personal lifestyles, may be risk factors of developing POI. In this section, we will discuss the influences of environmental and lifestyle factors on POI. Moreover updated basic research findings regarding how these environmental factors affect female ovarian function via epigenetic regulations will also be discussed.
Collapse
Affiliation(s)
- Yihua Yang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifang Yuan
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
44
|
Laws MJ, Neff AM, Brehm E, Warner GR, Flaws JA. Endocrine disrupting chemicals and reproductive disorders in women, men, and animal models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:151-190. [PMID: 34452686 PMCID: PMC9743013 DOI: 10.1016/bs.apha.2021.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter covers the known effects of endocrine disrupting chemicals (EDCs) on reproductive disorders. The EDCs represented are highly studied, including plasticizers (bisphenols and phthalates), chemicals in personal care products (parabens), persistent environmental contaminants (polychlorinated biphenyls), and chemicals in pesticides or herbicides. Both female and male reproductive disorders are reviewed in the chapter. Female disorders include infertility/subfertility, irregular reproductive cycles, early menopause, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and uterine fibroids. Male disorders include infertility/subfertility, cryptorchidism, and hypospadias. Findings from both human and animal studies are represented.
Collapse
|
45
|
Leung YK, Biesiada J, Govindarajah V, Ying J, Kendler A, Medvedovic M, Ho SM. Low-Dose Bisphenol A in a Rat Model of Endometrial Cancer: A CLARITY-BPA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127005. [PMID: 33296240 PMCID: PMC7725436 DOI: 10.1289/ehp6875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is known to be biologically active in experimental models even at low levels of exposure. However, its impact on endometrial cancer remains unclear. OBJECTIVES This study aimed to investigate whether lifelong exposure to different doses of BPA induced uterine abnormalities and molecular changes in a rat model. METHODS Sprague-Dawley rats were exposed to 5 doses of BPA [0, 25, 250, 2,500, or 25,000 μ g / kg body weight (BW)/d] or 2 doses of 17 α - ethynylestradiol (EE2) (0.05 and 0.5 μ g / kg BW/d) starting from gestational day 6 up to 1 y old according to the CLARITY-BPA consortium protocol. The BW, uterus weight, and histopathology end points of the uteri were analyzed at postnatal (PND) day 21, 90, and 365. Estrous cycling status was evaluated in PND90 and PND365 rats. Transcriptomic analyses of estrus stage uteri were conducted on PND365 rats. RESULTS Based on the analysis of the combined effects of all testing outcomes (including immunohistological, morphological, and estrous cycle data) in a semiblinded fashion, using statistical models, 25 μ g / kg BW/d BPA [BPA(25)], or 250 μ g / kg BW/d BPA [BPA(250)] exerted effects similar to that of EE2 at 0.5 μ g / kg BW/d in 1-y-old rats. Transcriptome analyses of estrus stage uteri revealed a set of 710 genes shared only between the BPA(25) and BPA(250) groups, with 115 of them predicted to be regulated by estradiol and 57 associated with female cancers. An interesting finding is that the expression of 476 human orthologous genes in this rat BPA signature robustly predicted the overall survival (p = 1.68 × 10 - 5 , hazard ratio = 2.62 ) of endometrial cancer patients. DISCUSSION Lifelong exposure of rats to low-dose BPA at 25 and 250 μ g / kg BW/d altered the estrous cycle and uterine pathology with similarity to EE2. The exposure also disrupted a unique low-dose BPA-gene signature with predictive value for survival outcomes in patients with endometrial cancer. https://doi.org/10.1289/EHP6875.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Vinothini Govindarajah
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jun Ying
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
46
|
Wen HJ, Chang TC, Ding WH, Tsai SF, Hsiung CA, Wang SL. Exposure to endocrine disruptor alkylphenols and the occurrence of endometrial cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115475. [PMID: 33254616 DOI: 10.1016/j.envpol.2020.115475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
Exposure to environmental chemicals with oestrogenic effects has been associated with the development of endometrial cancer (EMCa). EMCa has become the most commonly diagnosed cancer of the female genital tract. To further understand the potential association between exposure to environmental endocrine disruptors and the occurrence of EMCa, we performed a case-control study between 2011 and 2014. We aimed to detect and compare concentrations of a known hormone disruptor, alkylphenol, between women diagnosed with either EMCa or uterine leiomyoma, and those who did not have either of these. Subjects were women diagnosed with either EMCa or uterine leiomyoma (LM) and healthy controls. A structured questionnaire was administered to collect information on lifestyle and health status. Gas chromatography/mass spectrometry was used to measure urinary NP and OP concentrations in participants. Multiple regression analysis was used to examine the association between exposure and outcomes. Overall, 397 women were recruited, including 49 with EMCa, 247 with LM, and 101 controls. Among them, 73.6% showed detectable levels of NP and 61.0% showed detectable levels of OP. The EMCa group had a significantly higher NP concentration than the control group. Higher OP concentrations were also found in participants with EMCa than those with LM and controls. In addition, women in the upper tertile of the NP group had a significantly increased risk of EMCa occurrence (odds ratio [95% confidence interval] = 4.47 [1.69-11.84] for EMCa vs. control). The same was found in the group of women with more than the median level of OP (odds ratio [95% confidence interval] = 4.32 [2.01-9.30] for EMCa vs. LM). Stratification of pre- and post-menopausal groups resulted in a similar association. The results show that NP/OP exposure is associated with EMCa. Further investigations and exposure minimisation are suggested.
Collapse
Affiliation(s)
- Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynaecology, Chang-Gung Memorial Hospital, Taipei, Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Shih-Fen Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental Medicine, College of Public Health, China Medical University and Hospital, Taichung, Taiwan; Department of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
47
|
Kechagias KS, Semertzidou A, Athanasiou A, Paraskevaidi M, Kyrgiou M. Bisphenol-A and polycystic ovary syndrome: a review of the literature. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:323-331. [PMID: 32663175 DOI: 10.1515/reveh-2020-0032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age with reproductive, metabolic and endocrine implications. While the exact pathophysiological mechanisms of the syndrome are unknown, its heterogeneity suggests a multifactorial causal background. In the last two decades, numerous environmental chemicals, including Bisphenol-A (BPA) that is used in the synthesis of polycarbonate plastics, have been proposed as potential contributors to the aetiology of PCOS. This review provides a holistic overview of the available data regarding the possible relation of PCOS with BPA exposure. We have included a total number of 24 studies. Eleven human case-control and 13 animal studies provided data regarding this potential relation. Accumulating evidence suggests that a correlation between high levels of BPA and the presence of PCOS may exist. Contradicting results from human and animal studies, however, render it difficult to conclude on the exact role of BPA in the pathogenesis of PCOS. BPA may constitute a consequence of the syndrome rather than a cause, but further research is still needed to clarify this. Continued efforts to study the early origins of PCOS, using prospective-designed studies, are required to identify the exact effect of BPA on women with PCOS.
Collapse
Affiliation(s)
- Konstantinos S Kechagias
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Anita Semertzidou
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Antonios Athanasiou
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Maria Paraskevaidi
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Maria Kyrgiou
- Department of Metabolism, Digestion and Reproduction and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- West London Gynaecological Cancer Centre, Queen Charlotte's & Chelsea - Hammersmith Hospital, Imperial College healthcare NHS Trust, London, UK
| |
Collapse
|
48
|
Abstract
Adenomyosis is a nonmalignant uterine disorder in which endometrial tissue exists within and grows into the myometrium. Animal models have generated limited insight into the still-unclear pathogenesis of adenomyosis, provided a platform for preclinical screening of many drugs and compounds with potential as therapeutics, and elucidated mechanisms underlying the pain and fertility issues that occur in many women with the disease. Spontaneous adenomyosis has been studied in nonhuman primates, primarily in the form of case reports. Adenomyosis is routinely experimentally induced in mice through methods such as neonatal tamoxifen exposure, pituitary engraftment, and human tissue xenotransplantation. Several studies have also reported hormonal or environmental toxicant exposures that give rise to murine adenomyosis, and genetically engineered models have been created that recapitulate the human-like condition, most notably involving alteration of β-catenin expression. This review describes the animal models for adenomyosis and their contributions to our understanding of the factors underpinning the development of symptoms. Animal models represent a unique opportunity for understanding the molecular basis of adenomyosis and developing efficacious treatment options for affected women. Herein, we assess their different potentials and limitations with regard to identification of new therapeutic interventions and reflect on future directions for research and drug validation.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan.,Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
49
|
Dumitrascu MC, Mares C, Petca RC, Sandru F, Popescu RI, Mehedintu C, Petca A. Carcinogenic effects of bisphenol A in breast and ovarian cancers. Oncol Lett 2020; 20:282. [PMID: 33014160 DOI: 10.3892/ol.2020.12145] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds ubiquitously found in everyday life of the modern world. EDCs enter the human body where they act similarly to endogenous hormones, altering the functions of the endocrine system and causing adverse effects on human health. Bisphenol A (BPA), the principal representative of this class, is a carbon-based synthetic plastic, and a key element in manufacturing cans, reusable water bottles and medical equipment. BPA mimics the actions of estrogen on multiple levels by activating estrogen receptors α and β. BPA regulates various processes, such as cell proliferation, migration and apoptosis, leading to neoplastic changes. Considering genetic mechanisms, BPA exerts its functions via multiple oncogenic signaling pathways, including the STAT3, PI3K/AKT and MAPK pathways. Furthermore, BPA is associated with various modifications of the reproductive system in both males and females. These alterations include benign lesions, such as endometrial hyperplasia, the development of ovarian cysts, an increase in the ductal density of mammary gland cells and other preneoplastic lesions. These benign lesions may continue to develop to breast or ovarian cancer; the effects of BPA depend on various molecular and epigenetic mechanisms that dictate whether the endocrine or reproductive system is impacted, wherein preexisting benign lesions can become cancerous. The present review supports the need for continuous research on BPA, considering its widespread use and most available data suggesting a carcinogenic effect of BPA on the female reproductive system. Although most studies on BPA have been conducted in vitro with human cells or in vivo with animal models, it can be argued that more studies should be conducted in vivo with humans to further promote understanding of the impact of BPA.
Collapse
Affiliation(s)
- Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Cristian Mares
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania.,Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatology, Elias Emergency University Hospital, 011461 Bucharest, Romania.,Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Razvan-Ionut Popescu
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Claudia Mehedintu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Malaxa Clinical Hospital, 022441 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|
50
|
Segovia-Mendoza M, Nava-Castro KE, Palacios-Arreola MI, Garay-Canales C, Morales-Montor J. How microplastic components influence the immune system and impact on children health: Focus on cancer. Birth Defects Res 2020; 112:1341-1361. [PMID: 32767490 DOI: 10.1002/bdr2.1779] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND As a result of human socioeconomic activity, industrial wastes have increased distressingly. Plastic pollution is globally distributed across the world due to its properties of buoyancy and durability. A big health hazard is the sorption of toxicants to plastic while traveling through the environment. Two broad classes of plastic-related chemicals are of critical concern for human health-bisphenols and phthalates. Bisphenol A (BPA) is an endocrine-disruptor compound (EDC) with estrogenic activity. It is used in the production of materials that are used daily. The endocrine modulating activity of BPA and its effects on reproductive health has been widely studied. BPA also has effects on the immune system; however, they are poorly investigated and the available data are inconclusive. Phthalates are also EDCs used as plasticizers in a wide array of daily-use products. Since these compounds are not covalently bound to the plastic matrix, they easily leach out from it, leading to high human exposure. These compounds exert several cell effects through modulating different endocrine pathways, such as estrogen, androgen, peroxisome proliferator-activated receptor gamma, and arylhydrocarbon receptor pathways. The exposure to both classes of plastic derivatives during critical periods has detrimental effects on human health. METHODS In this review, we have compiled the most important of their perinatal effects on the function of the immune system and their relationship to the development of different types of cancer. RESULTS/CONCLUSION The administration of bisphenols and phthalates during critical stages of development affects important immune system components, and the immune function; which might be related to the development of different diseases including cancer.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karen E Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Margarita I Palacios-Arreola
- Laboratorio de Genotoxicología y Mutagénesis Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|