1
|
Chen W, Wang X, Wan S, Yang Y, Zhang Y, Xu Z, Zhao J, Mi C, Zhang H. Dichloroacetic acid and trichloroacetic acid as disinfection by-products in drinking water are endocrine-disrupting chemicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133035. [PMID: 38266585 DOI: 10.1016/j.jhazmat.2023.133035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 01/26/2024]
Abstract
Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5 × 104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥ 103-fold MCL of DCAA (26.4 mg/kg/d) or TCAA (52.7 mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥ 104-fold MCL of DCAA (264 mg/kg/d) or ≥ 103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥ 103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERβ) in ovary were reduced with ≥ 102-fold MCL of DCAA (2.64 mg/kg/d) or TCAA (5.27 mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERβ in uterus and placenta. Exposure to 5 × 104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.
Collapse
Affiliation(s)
- Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaoqing Wang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Shukun Wan
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yang Yang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Ying Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
2
|
Abd-Allah ER, Fouad NY, Ghareeb AEWE, Eldebss TMA. Chloroacetonitrile reduces rat prenatal bone length and induces oxidative stress, apoptosis, and DNA damage in rat fetal liver. Birth Defects Res 2023; 115:614-632. [PMID: 36751045 DOI: 10.1002/bdr2.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
One of the disinfection byproducts of chlorinating drinking water is chloroacetonitrile (CAN). Thirty-six female rats were used and distributed equally into four groups. The low dose treated group received CAN at a dose of 5.5 mg/kg body weight/day (1/40 LD50 ) orally from the 6th to 12th day of gestation. The high dose treated group received 11 mg/kg body weight/day (1/20 LD50 ) of CAN orally for the same period, the vehicle control group received 1 mL of corn oil, and the water control group received 1 mL of distilled water orally for the same period. High dose exposure to CAN significantly reduced gravid uterine weight, fetal body weights, and length, and caused obvious skeletal deformities, weak mineralization. Fetal tibial growth plates displayed histopathologic changes. Induced oxidative stress and redox imbalance in fetal liver tissues was evidenced by significantly decreased in catalase and superoxide dismutase activity, and elevated malondialdehyde levels. Histopathological, glycogen content changes, and DNA damage were observed in the fetal liver of high dose treated group. Additionally, administration of high dose of CAN induced apoptosis, evidenced by increased caspase-3 concentration in fetal liver. Thus, extensive exposure to CAN induces poor pregnancy outcomes. CAN levels in water should be monitored regularly.
Collapse
Affiliation(s)
- Entsar R Abd-Allah
- Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Nourhan Y Fouad
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Taha M A Eldebss
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Liu C, Deng YL, Yuan XQ, Chen PP, Miao Y, Luo Q, Zhang M, Cui FP, Yao W, Zeng JY, Shi T, Lu TT, Li YF, Lu WQ, Zeng Q. Exposure to disinfection by-products and reproductive hormones among women: Results from the Tongji Reproductive and Environmental (TREE) study. ENVIRONMENTAL RESEARCH 2022; 209:112863. [PMID: 35123968 DOI: 10.1016/j.envres.2022.112863] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Disinfection by-products (DBPs) have been shown to impair female reproductive function. However, epidemiological evidence on reproductive hormones is scarce. OBJECTIVE To investigate the associations between DBP exposures and reproductive hormones among women undergoing assisted reproductive technology. METHODS We included 725 women from the Tongji Reproductive and Environmental (TREE) Study, an ongoing cohort conducted in Wuhan, China during December 2018 and January 2020. Urine samples collected at recruitment were quantified for dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) as biomarkers of DBP exposures. At day 2-5 of menstruation, serum reproductive hormones including luteinizing hormone (LH), estradiol (E2), total testosterone (T), progesterone (PRGE), and prolactin (PRL) were determined. Multivariate linear regression models were performed to assess the associations of urinary DCAA and TCAA concentrations with reproductive hormone levels. Dose-response relationships were investigated using natural cubic spline (NCS) and restricted cubic spline (RCS) models. RESULTS After adjusting for relevant confounders, we observed that higher urinary DCAA levels were associated with increased serum PRGE (9.2%; 95% CI: -0.55%, 19.8% for the highest vs. lowest tertile; P for trend = 0.06). Based on NCS models, we observed U-shaped associations of urinary DCAA with serum PRGE and PRL; each ln-unit increment in urinary DCAA concentrations above 3.61 μg/L and 6.30 μg/L was associated with 18.9% (95% CI: 4.8%, 34.7%) and 23.3% (95% CI: -0.92%, 53.5%) increase in serum PRGE and PRL, respectively. The U-shaped associations were further confirmed in RCS models (P for overall association ≤0.01 and P for non-linear associations ≤0.04). We did not observe evidence of associations between urinary TCAA and reproductive hormones. CONCLUSION Urinary DCAA but not TCAA was associated with altered serum PRGE and PRL levels among women undergoing assisted reproductive technology.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Summerhayes RJ, Rahman B, Morgan GG, Beresin G, Moreno C, Wright JM. Meta-analysis of small for gestational age births and disinfection byproduct exposures. ENVIRONMENTAL RESEARCH 2021; 196:110280. [PMID: 33035558 PMCID: PMC11425775 DOI: 10.1016/j.envres.2020.110280] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Some epidemiological studies show associations between disinfection byproducts (DBPs) and adverse developmental outcomes. OBJECTIVES We undertook a meta-analysis of epidemiological studies on maternal exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) and risk of small for gestational age (SGA) birth. METHODS We identified forty-five publications including two reports and five theses via a 2020 literature search. Nineteen study populations from 16 publications met the inclusion criteria and were systematically evaluated. Effect measures were pooled using random effects meta-analytic methods along with cumulative, sub-group and meta-regression analyses to examine between-study heterogeneity and variation in risk across different DBP measures. RESULTS We detected a small increased risk for SGA with exposure to the sum of four (i.e., THM4) THM4 (odds ratio (OR) = 1.07; 95%CI: 1.03, 1.11), chloroform (OR = 1.05; 95%CI: 1.01, 1.08), bromodichloromethane (OR = 1.08; 95%CI: 1.05, 1.11) and the sum of the brominated THM4 (OR = 1.05; 95%CI: 1.02, 1.09). Larger ORs were detected for the sum of five haloacetic acids (i.e., HAA5) (OR = 1.12; 95%CI: 1.01, 1.25), dichloroacetic acid (OR = 1.25; 95%CI: 1.01, 1.41) and trichloroacetic acid (OR = 1.21; 95%CI: 1.07, 1.37). We detected larger SGA risks for several THM4 among the prospective cohort and case-control studies compared to retrospective cohorts and for the SGA3/5% (vs. SGA10%) studies. The THM4 meta-regression showed associations between SGA and the total quality score based on categorical or continuous measures. For example, an OR of 1.03 (95%CI: 1.01, 1.06) was detected for each 10-point increase in the study quality score based on our systematic review. CONCLUSIONS We detected a small increased risk of SGA based on 18 THM4 study populations that was comparable to a previous meta-analysis of eight THM4 study populations. We also found increased risks for other THM4 and HAA measures not previously examined; these results were robust after accounting for outliers, publication bias, type of SGA classification, different exposure windows, and other factors.
Collapse
Affiliation(s)
| | - B Rahman
- University of Sydney, School of Public Health and University Centre for Rural Health, Australia
| | - G G Morgan
- University of Sydney, School of Public Health and University Centre for Rural Health, Australia
| | - G Beresin
- Massachusetts Department of Public Health, USA
| | - C Moreno
- Oak Ridge Associated Universities, USA
| | - J M Wright
- US EPA, Center for Public Health and Environmental Assessment, USA.
| |
Collapse
|
6
|
Wachamo TM, Bililign Yimer N, Bizuneh AD. Risk factors for low birth weight in hospitals of North Wello zone, Ethiopia: A case-control study. PLoS One 2019; 14:e0213054. [PMID: 30893344 PMCID: PMC6426181 DOI: 10.1371/journal.pone.0213054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Low birth weight at birth is an important underlying contributor for neonatal and infant mortality. It accounts for nearly half of all perinatal deaths. Identifying predictors of low birth weight is the first essential step in designing appropriate management strategies. Hence, this study aimed to identify risk factors for low birth weight in hospitals of northeastern Ethiopia. METHODS An institution based case-control study design was conducted from 10th April to 15th December 2016. Three hundred sixty mother-infant pairs (120 low birth weight babies as cases and 240 normal birth weights as controls) were included in the study. Data were collected by face-to-face interview. Univariable and multivariable logistic regression models were computed to examine the effect of independent variables on outcome variable using SPSS 20.0. Variables with p-value <0.05 were considered statistically significant. RESULTS The mean (±SD) gestational age and birth weight (±SD) were 39.2 (±1.38) weeks and 2800 (±612), grams respectively. Partner's education/being illiterate (AOR: 4.09; 95% CI 1.45, 11.50), antenatal care visit at private health institutions (AOR: 0.13; 95% CI 0.02, 0.66), having history of obstetric complications (AOR: 5.70; 95% CI 2.38, 13.63), maternal weight during pregnancy (AOR: 4.04; 95% CI 1.50, 10.84) and gravidity (AOR: 0.36; 95% CI 0.18, 0.73) were significantly associated with low birth weight. Additionally, a site for water storage and water treatment were significant environmental factors. CONCLUSION Maternal weight during pregnancy, paternal education, previous obstetric complication and place of antenatal follow-up were associated with low birth weight. The risk factors identified in this study are preventable. Thus, nutritional counseling, health education on improvement of lifestyle and early recognition and treatment of complications are the recommended interventions.
Collapse
Affiliation(s)
- Tesfahun Mulatu Wachamo
- Department of Public Health, Faculty of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Nigus Bililign Yimer
- Department of Midwifery, Faculty of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Asmamaw Demis Bizuneh
- Department of Nursing, Faculty of Health Sciences, Woldia University, Woldia, Ethiopia
| |
Collapse
|