1
|
Kim WS, Park K, Kim JH, Kwak IS. Effect of endocrine-disrupting chemicals on the expression of a calcium ion channel receptor (ryanodine receptor) in the mud crab (Macrophthalmus japonicus). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109972. [PMID: 38972622 DOI: 10.1016/j.cbpc.2024.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are toxic pollutants generated by artificial activities. Moreover, their hormone-like structure induces disturbances, such as mimicking or blocking metabolic activity. Previous studies on EDCs have focused on the adverse effect of the endocrine system in vertebrates, with limited investigations conducted on ion channels in invertebrates. Thus, in this study, we investigated the potential adverse effects of exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) at the molecular level on the ryanodine receptor (RyR), a calcium ion channel receptor in Macrophthalmus japonicus. In the phylogenetic analysis, the RyR amino acid sequences in M. japonicus clustered with those in the Crustacean and formed separated branches for RyR in insects and mammals. When exposed to 1 μg L-1 BPA, a significant increase in RyR mRNA expression was observed in the gills on day 1, although a similar level to the control group was observed from day 4 to day 7. However, the RyR expression due to DEHP exposure decreased on days 1 and 4, although it increased on day 7 following exposure to 10 μg L-1. The RyR expression pattern in the hepatopancreas increased for up to 4 days, depending on the BPA concentration. However, there was a tendency for the expression to decrease gradually after the statistical significance increased during the early stage of DEHP exposure (D1). Hence, the transcriptional alterations in the M. japonicus RyR gene observed in the study suggest that exposure toxicities to EDCs, such as BPA and DEHP, have the potential to disrupt calcium ion channel signaling in the gills and hepatopancreas of M. japonicus crabs.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ji-Hoon Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea; Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
2
|
Taques BOM, Gamba HR, Menegaz D, Silva FRMB, Suzuki DOH. Predictions from a mathematical approach to model ionic signaling for rapid responses of Sertoli cells exhibit similarities to pharmacological approaches. Biomed Phys Eng Express 2023; 9:065010. [PMID: 37725948 DOI: 10.1088/2057-1976/acfb07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Sertoli cells are essential for the male reproduction system as they provide morphological support and nutrients for germ cells to guarantee ongoing spermatogenesis. The aim of this work was to predict the electrical properties at the plasma membrane that trigger Sertoli cell rapid responses by involving ionic channels. The rapid responses of Sertoli cells in culture were monitored using patch clamp electrical measurement and compared to data obtained using pharmacological tools (from intact seminiferous tubules). A mathematical model was used to define the roles of potassium channels and the ATP-dependent Na+/K+pump in these responses. Mathematical data verification was also performed to determine the resting and hormonal stimulated membrane potentials of Sertoli cells in the intact seminiferous tubules and of Sertoli cells in culture (patch clamp measurements). The prediction of these data based on mathematical modeling demonstrated, for the first time, the involvement of potassium channels and the activation of Na+/K+pump in the hyperpolarization of Sertoli cells and their consequent rapid responses. Moreover, the mathematical analysis showing the involvement of ionic balance in the rapid responses of these cells to hormones, such as follicle-stimulating hormone, is consistent with previous reports obtained using pharmacological techniques in Sertoli cells. Thus, the validation of such data is reliable and represents a first step in the proposition for a mathematical model to predict rapid responses of Sertoli cells to hormonal stimuli.
Collapse
Affiliation(s)
- Bárbara O M Taques
- Department of Electronics, Federal Institute of Santa Catarina (IFSC), Rua Pavão, 1377, CEP: 89220-618, Joinville, SC, Brazil
- Federal University of Technology - Paraná (UTFPR), Av. Sete de Setembro, 3165, CEP: 80230-901 Curitiba, PR, Brazil
- Institute of Biomedical Engineering, Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, CEP: 88040-900 - Florianópolis, SC, Brazil
| | - Humberto R Gamba
- Federal University of Technology - Paraná (UTFPR), Av. Sete de Setembro, 3165, CEP: 80230-901 Curitiba, PR, Brazil
| | - Danusa Menegaz
- Departament of Biochemistry. Center of Biological Sciences, Federal University of Santa Catarina. Rua João Pio Duarte Silva 241, Sala G301 - terceiro andar. Córrego Grande. CEP: 88037-9000 - Florianópolis, SC, Brazil
- Cell Bioelectricity Center (NUBIOCEL). Center of Biological Sciences, Federal University of Santa Catarina. Rua João Pio Duarte Silva 241, Sala G301 - terceiro andar. Córrego Grande. CEP: 88037-9000 - Florianópolis, SC, Brazil
| | - Fátima R M B Silva
- Departament of Biochemistry. Center of Biological Sciences, Federal University of Santa Catarina. Rua João Pio Duarte Silva 241, Sala G301 - terceiro andar. Córrego Grande. CEP: 88037-9000 - Florianópolis, SC, Brazil
- Cell Bioelectricity Center (NUBIOCEL). Center of Biological Sciences, Federal University of Santa Catarina. Rua João Pio Duarte Silva 241, Sala G301 - terceiro andar. Córrego Grande. CEP: 88037-9000 - Florianópolis, SC, Brazil
| | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, CEP: 88040-900 - Florianópolis, SC, Brazil
| |
Collapse
|
3
|
Fenclová T, Chemek M, Havránková J, Kolinko Y, Sudová V, Moravec J, Navrátilová J, Klein P, Králíčková M, Nevoral J. Effect of Bisphenol S on testicular tissue after low-dose lactation exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120114. [PMID: 36096261 DOI: 10.1016/j.envpol.2022.120114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure to endocrine disruptors such as bisphenols, can lead to and be the explanation for idiopathic infertility. In our study, we assessed the effect of exposure to bisphenol S (BPS) via breast milk on the testicular tissue health of adult male mice. Lactating dams were exposed to BPS through drinking water (0.216 ng g bw/day and 21.6 ng g bw/day) from post-natal day 0-15. Although there was no significant difference in testicular histopathology between the control and experimental groups, we observed an increase in the number of tight and gap junctions in the blood-testis barrier (BTB) of adult mice after lactation BPS exposure. Moreover, there was an increase in oxidative stress markers in adult testicular tissue of mice exposed via breast milk. Our lactation model indicates that breast milk is a route of exposure to an endocrine disruptor that can be responsible for idiopathic male infertility through the damage of the BTB and weakening of oxidative stress resistance in adulthood.
Collapse
Affiliation(s)
- Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| | - Marouane Chemek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Pilsen, 30166, Czech Republic.
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Pilsen, 30166, Czech Republic.
| | - Vendula Sudová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| | - Jiří Moravec
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| | - Jana Navrátilová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Pilsen, 30166, Czech Republic.
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Pilsen, 30166, Czech Republic.
| |
Collapse
|
4
|
Ismail OI, El-Meligy MMS. Curcumin ameliorated low dose-Bisphenol A induced gastric toxicity in adult albino rats. Sci Rep 2022; 12:10201. [PMID: 35715475 PMCID: PMC9206026 DOI: 10.1038/s41598-022-14158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is one of the most common worldwide chemicals involved in the industry of polycarbonate plastics, medical devices, and pharmaceuticals. Forty three-month-old albino rats were randomly classified into four groups. Group Ӏ received a daily corn oil dose (5 mL/kg/ body weight, BW) through a gastric tube for one month, Group ӀӀ received a daily dose of Curcumin (200 mg/kg body weight (B.W.) through a gastric tube for one month, Group ӀӀӀ received a daily dose of BPA (0.5 μg/kg B.W.) through a gastric tube for one month and Group ӀV received concomitant daily doses of Bisphenol A and Curcumin as the regimen described in groups ӀӀ and ӀӀӀ. The rats were sacrificed, and glandular portion of stomach was dissected and processed for light, immunohistochemical and ultrastructural study. BPA induced destructed gastric glands, dilated congested blood vessels, submucosal oedema, decreased PAS-positive reactivity, increased collagen fibres deposition, decrease in the positive BCL2 immunoexpression, increased positive PCNA immunoexpression, reduction in the gastric mucosal height and destructive changes in the enteroendocrine, chief and parietal cells. Curcumin coadministration provoked an obvious improvement in the gastric structure. BPA exposure has toxic effects on the glandular portion of the stomach in rats. Otherwise, Curcumin coadministration has exhibited protective impact on the architecture of the stomach.
Collapse
Affiliation(s)
- Omnia Ibrahim Ismail
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | |
Collapse
|
5
|
Knowledge Gap in Understanding the Steroidogenic Acute Regulatory Protein Regulation in Steroidogenesis Following Exposure to Bisphenol A and Its Analogues. Biomedicines 2022; 10:biomedicines10061281. [PMID: 35740303 PMCID: PMC9219931 DOI: 10.3390/biomedicines10061281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
The use of bisphenols has become extremely common in our daily lives. Due to the extensive toxic effects of Bisphenol A (BPA), the industry has replaced this endocrine-disrupting chemical (EDC) with its analogues, which have been proven to decrease testosterone levels via several mechanisms, including targeting the steroidogenic acute regulatory (StAR) protein. However, when exposed to BPA and its analogues, the specific mechanism that emerges to target StAR protein regulations remains uncertain. Hence, this review discusses the effects of BPA and its analogues in StAR protein regulation by targeting cAMP-PKA, PLC-PKC, EGFR-MAPK/ERK and Ca2+-Nur77. BPA and its analogues mainly lead to decreased LH in blood and increased ERK expression and Ca2+ influx, with no relationship with the StAR protein regulation in testicular steroidogenesis. Furthermore, the involvement of the cAMP-PKA, PLC-PKC, and Nur77 molecules in StAR regulation in Leydig cells exposed to BPA and its analogues remains questionable. In conclusion, although BPA and its analogues have been found to disrupt the StAR protein, the evidence in connecting the signaling pathways with the StAR regulations in testicular steroidogenesis is still lacking, and more research is needed to draw a solid conclusion.
Collapse
|
6
|
Tian M, Xia P, Gou X, Yan L, Yu H, Zhang X. CRISPR screen identified that UGT1A9 was required for bisphenols-induced mitochondria dyshomeostasis. ENVIRONMENTAL RESEARCH 2022; 205:112427. [PMID: 34861229 DOI: 10.1016/j.envres.2021.112427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Exposure to bisphenols chemicals could cause various adverse health effects, including non-alcoholic fatty liver disease (NAFLD), which have been associated with cellular mitochondria stress. However, the biological mechanism underlying the mitochondria stress-mediated cell death by bisphenols was poorly understood. Here, CRISPR screens were performed to identify the critical genes which were involved in cell death caused by exposure to four bisphenols (BPA, BPB, BPE and BPS). Results of CRISPR screens showed that UGT1A9 was the primary genetic factor facilitating cell death induced by all of the four bisphenols. Systematic toxicological tests demonstrated that UGT1A9 was required for BPA-induced mitochondria dyshomeostasis in vitro and in vivo, and UGT1A9-mediated mitochondria dyshomeostasis was an important cause of facilitating cell death. Liver injury caused by exposure to BPA in wild-type mice was accompanied with suppression of mitophagy and increased expression of C-Caspase 3, but UGT1A9 knockout attenuated these adverse effects induced by BPA. Finally, molecular epidemiology analysis suggested that the five genetic variants of UGT1A9 could be potential genetic risk factors of NAFLD when people were exposed to BPA. The biological mechanism uncovered here provided mechanistic evidence for identification of susceptible populations of liver injury associated with exposure to BPA.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
7
|
Tabasso C, Frossard MP, Ducret C, Chehade H, Mauduit C, Benahmed M, Simeoni U, Siddeek B. Transient Post-Natal Exposure to Xenoestrogens Induces Long-Term Alterations in Cardiac Calcium Signaling. TOXICS 2022; 10:toxics10030102. [PMID: 35324727 PMCID: PMC8954167 DOI: 10.3390/toxics10030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023]
Abstract
Today, non-communicable disorders are widespread worldwide. Among them, cardiovascular diseases represent the main cause of death. At the origin of these diseases, exposure to challenges during developmental windows of vulnerability (peri-conception, in utero, and early infancy periods) have been incriminated. Among the challenges that have been described, endocrine disruptors are of high concern because of their omnipresence in the environment. Worrisomely, since birth, children are exposed to a significant number of endocrine disruptors. However, the role of such early exposure on long-term cardiac health is poorly described. In this context, based on a model of rats exposed postnatally and transiently to an estrogenic compound prototype (estradiol benzoate, EB), we aimed to delineate the effects on the adult heart of such transient early exposure to endocrine disruptors and identify the underlying mechanisms involved in the potential pathogenesis. We found that this transient post-natal exposure to EB induced cardiac hypertrophy in adulthood, with increased cardiomyocyte size. The evaluation of cardiac calcium signaling, through immunoblot approaches, highlighted decreased expression of the sarcoplasmic reticulum calcium ATPase 2 (SERCA2) and decreased Nuclear Factor of Activated T Cells (NFAT3) phosphorylation as a potential underlying mechanism of cardiac hypertrophy. Furthermore, the treatment of cardiomyocytes with EB in vitro induced a decrease in SERCA2 protein levels. Overall, our study demonstrates that early transient exposure to EB induces permanent cardiac alterations. Together, our data highlight SERCA2 down-regulation as a potential mechanism involved in the cardiac pathogenesis induced by EB. These results suggest programming of adult heart dysfunctions such as arrhythmia and heart failures by early exposure to endocrine disruptors and could open new perspectives for treatment and prevention.
Collapse
Affiliation(s)
- Cassandra Tabasso
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Marie-Pauline Frossard
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Camille Ducret
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Hassib Chehade
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Claire Mauduit
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, 06204 Nice, France; (C.M.); (M.B.)
| | - Mohamed Benahmed
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, 06204 Nice, France; (C.M.); (M.B.)
| | - Umberto Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Benazir Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
- Correspondence: ; Tel.: +41-21-3143-212
| |
Collapse
|
8
|
Kobayashi Y, Oguro A, Yagi E, Mitani A, Kudoh SN, Imaoka S. Bisphenol A and rotenone induce S-nitrosylation of protein disulfide isomerase (PDI) and inhibit neurite outgrowth of primary cultured cells of the rat hippocampus and PC12 cells. J Toxicol Sci 2021; 45:783-794. [PMID: 33268678 DOI: 10.2131/jts.45.783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA) interferes the function and development of the central nervous system (CNS), resulting in behavioral abnormalities and memory loss. S-nitrosylation of protein disulfide isomerase (PDI) is increased in brains with sporadic Alzheimer's disease and Parkinson's disease. The aim of the present study was to clarify the role of nitric oxide (NO) in BPA-induced neurotoxicity. Since rotenone induces NO-mediated neurodegeneration through S-nitrosylation of PDI, it was used as a positive control. First, rats were treated with BPA and rotenone, and S-nitrosylation of PDI was detected in rat brain microsomes. BPA and rotenone decreased RNase oxidation activity of PDI concomitant with S-nitrosylation of PDI. Next, to clarify S-nitrosylation of PDI by BPA and rotenone in rat brains, we treated the rat pheochromocytoma cell line PC12 and primary cultured neuron cells from the rat hippocampus with BPA (5 and 10 μM) and rotenone (100 or 200 nM). BPA induced S-nitrosylation of PDI, while NG-monomethyl-L-arginine (L-NMMA), a NOS inhibitor, exerted the opposite effects. Finally, to evaluate the toxicity of BPA in the CNS, we investigated its effects on neurite outgrowth of PC12 and primary cultured neuron cells. BPA inhibited neurite outgrowth of these cells, while L-NMMA reversed this inhibition. The involvement of PDI activity in neurite outgrowth was also examined, and bacitracin, a PDI inhibitor, is shown to decrease neurite outgrowth. Furthermore, the overexpression of PDI, but not a catalytically inactive PDI mutant, enhanced neurite outgrowth. These results suggested that S-nitrosylation of PDI induced by excessive NO caused BPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Erina Yagi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Akira Mitani
- Department of Human-System Interaction, School of Science and Technology, Kwansei Gakuin University
| | - Suguru N Kudoh
- Department of Human-System Interaction, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
9
|
Staldoni de Oliveira V, Gomes Castro AJ, Marins K, Bittencourt Mendes AK, Araújo Leite GA, Zamoner A, Van Der Kraak G, Mena Barreto Silva FR. Pyriproxyfen induces intracellular calcium overload and alters antioxidant defenses in Danio rerio testis that may influence ongoing spermatogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116055. [PMID: 33272804 DOI: 10.1016/j.envpol.2020.116055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
We investigated the in vitro effects of pyriproxyfen on ionic balance in the testis of the zebrafish by measuring 45Ca2+ influx. In vivo pyriproxyfen treatment was carried out to study oxidative stress, and conduct morphological analysis of the testis and liver. Whole testes were incubated in vitro with/without pyriproxyfen (10-12, 10-9 or 10-6 M; 30 min) and 45Ca2+ influx determined. To study pyriproxyfen's mechanism of action, inhibitors/activators of ionic channels or pumps/exchangers, protein kinase inhibitors or a calcium chelator were added 15 min before the addition of 45Ca2+ and pyriproxyfen. We evaluated the in vivo effects of 7 day exposure to waterborne pyriproxyfen (10-9 M) on reactive oxygen species (ROS) formation, lipid peroxidation, and reduced glutathione content (GSH), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and γ-glutamyltransferase (GGT) activity. Morphological analyses of the testis and liver were carried out after in vivo exposure of D. rerio to pyriproxyfen. Pyriproxyfen increased 45Ca2+ influx by opening the voltage-dependent T-type channels (T-type VDCC), inhibiting sarco/endoplasmic reticulum 45Ca2+-ATPase (SERCA) and the NCX exchanger (forward mode) and by mobilizing calcium from stores. The involvement of potassium channels and protein kinase C (PKC) was also demonstrated in pyriproxyfen-induced intracellular calcium elevation. In vivo pyriproxyfen treatment of D. rerio increased lipid peroxidation, decreased GSH content and increased GST activity in testes, in addition to increasing the number and size of spermatogonia cysts and inducing hepatocyte basophilia and dilation of blood vessels in the liver. The toxicity of pyriproxyfen is mediated by calcium overload, increased lipid peroxidation, and a diminished antioxidant capacity in the testis, due to GSH depletion, and altered spermatogenesis. The development of high basophilia in the liver suggests that pyriproxyfen may have estrogenic activity, possibly acting as an endocrine-disruptor. These findings indicate that these alterations may contribute to pyriproxyfen toxicity and spermatogenesis disruption.
Collapse
Affiliation(s)
- Vanessa Staldoni de Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Katiuska Marins
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Karla Bittencourt Mendes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Gabriel Adan Araújo Leite
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Glen Van Der Kraak
- University of Guelph, Department of Integrative Biology, Guelph, ON, Canada
| | | |
Collapse
|
10
|
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 2021; 17:83-96. [PMID: 33288917 DOI: 10.1038/s41574-020-00436-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.
Collapse
Affiliation(s)
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), OHSU, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium.
- Department of Pediatrics, University Hospital Liège, Liège, Belgium.
| |
Collapse
|
11
|
Güzel KGU, Nazıroğlu M, Ceyhan D. Bisphenol A-Induced Cell Proliferation and Mitochondrial Oxidative Stress Are Diminished via Modulation of TRPV1 Channel in Estrogen Positive Breast Cancer Cell by Selenium Treatment. Biol Trace Elem Res 2020; 198:118-130. [PMID: 32040846 DOI: 10.1007/s12011-020-02057-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Cancer cell proliferation and apoptosis are induced by overload Ca2+ entry. Transient receptor potential vanilloid 1 (TRPV1) as a Ca2+ permeable cation channel is activated by capsaicin and reactive oxygen species (ROS), although it is blocked by capsazepine and sodium selenite (Na-Se). Bisphenol A (BPA) induces estrogenic action and further stimulates the proliferation of estrogen receptor positive MCF-7 cell through excessive production ROS and Ca2+ influx. However, whether or not Na-Se can influence BPA-induced oxidative stress and apoptosis through modulation of TRPV1 in breast cancer cells has not drawn much attention. The MCF-7 and MDA-MB-231 breast cancer cells were divided into four treatment groups as control, Na-Se (1 μM for 2 h), and BPA (0.1 mM for 24 h) and BPA + Na-Se. The Na-Se reduced BPA-induced increase of cell number, mitochondria oxidative stress, and TRPV1 channel activity modulation of MCF-7 cells, which was proved by the suppression of cell viability, excessive ROS production, mitochondrial membrane depolarization, lipid peroxidation, early apoptosis (Annexin-V), late apoptosis (propidium iodide) and upregulation of reduced glutathione, glutathione peroxidase, and cell death (propidium iodide/Hoechst rate). The similar effects of Na-Se were observed in the MCF-7 cells by capsazepine treatment. However, the effects of BPA were not observed in the MDA-MB-231 breast cancer cells. In conclusion, cell proliferative and oxidant effects of BPA were increased by activation of TRPV1, but its action on the values was decreased by the Na-Se treatment. The results may be a good set of preliminary data for designing animal studies on estrogenic effect of bisphenol A and antiestrogenic of selenium.
Collapse
Affiliation(s)
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, 32260, Isparta, Turkey.
- Drug Discovery and Development Research Group, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Goller Bolgesi Teknokenti, Isparta, Turkey.
| | - Derya Ceyhan
- Department of Pedodontics, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
12
|
Rodrigues K, Batista-Silva H, Sousa de Moura KR, Van Der Kraak G, Mena Barreto Silva FR. Dibutyl phthalate rapidly alters calcium homeostasis in the gills of Danio rerio. CHEMOSPHERE 2020; 258:127408. [PMID: 32782161 DOI: 10.1016/j.chemosphere.2020.127408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the impacts of exposure to an environment Ca2+ challenge and the mechanism of action of dibutyl phthalate (DBP) on Ca2+ influx in the gills of Danio rerio. In vitro profile of 45Ca2+ influx in gills was verified through the basal time-course. Fish were exposed to low, normal and high Ca2+ concentrations (0.02, 0.7 and 2 mM) for 12 h. So, gills were morphologically analysed and ex vivo45Ca2+ influx at 30 and 60 min was determined. For the in vitro studies, gills were treated for 60 min with DBP (1 pM, 1 nM and 1 μM) with/without blockers/activators of ionic channels, Ca2+ chelator, inhibitors of ATPases, ionic exchangers and protein kinase C to study the mechanism of DBP-induced 45Ca2+ influx. Exposure to high environmental Ca2+ augmented 45Ca2+ influx when compared to fish exposed to normal and low Ca2+ concentrations. Additionally, histopathological changes were observed in the gills of fish maintained for 12 h in low and high Ca2+. In vitro exposure of gills to DBP (1 pM) disturbed Ca2+ homeostasis. DBP stimulated 45Ca2+ influx in gills through the transitory receptor potential vanilloid 1 (TRPV1), and reverse-mode Na+/Ca2+ exchanger (NCX) activation, protein kinase C and K+ channels and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). These data suggest that in vivo short-term exposure of gills to low and high Ca2+ leads to 45Ca2+ influx and histopathological changes. Additionally, the DBP-induced rapid 45Ca2+ influx is mediated by TRPV1, NCX activation with the involvement of PKC, K+-channels and SERCA, thereby altering Ca2+ homeostasis.
Collapse
Affiliation(s)
- Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
13
|
Batista-Silva H, Rodrigues K, Sousa de Moura KR, Van Der Kraak G, Delalande-Lecapitaine C, Mena Barreto Silva FR. Role of bisphenol A on calcium influx and its potential toxicity on the testis of Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110876. [PMID: 32563953 DOI: 10.1016/j.ecoenv.2020.110876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the acute in vitro effect of low-concentration bisphenol A (BPA) on calcium (45Ca2+) influx in zebrafish (Danio rerio) testis and examined whether intracellular Ca2+ was involved in the effects of BPA on testicular toxicity. In vitro studies on 45Ca2+ influx were performed in the testes after incubation with BPA for 30 min. Inhibitors were added 15 min before the addition of 45Ca2+ and BPA to testes to study the mechanism of action of BPA. The involvement of intracellular calcium from stores on lactate dehydrogenase (LDH) release and on triacylglycerol (TAG) content were carried out after in vitro incubation of testes with BPA for 1 h. Furthermore, gamma-glutamyl transpeptidase (GGT) and aspartate aminotransferase (AST) activities were analyzed in the liver at 1 h after in vitro BPA incubation of D. rerio. Our data show that the acute in vitro treatment of D. rerio testes with BPA at very low concentration activates plasma membrane ionic channels, such as voltage-dependent calcium channels and calcium-dependent chloride channels, and protein kinase C (PKC), which stimulates Ca2+ influx. In addition, BPA increased cytosolic Ca2+ by activating inositol triphosphate receptor (IP3R) and inhibiting sarco/endoplasmic reticulum calcium ATPase (SERCA) at the endoplasmic reticulum, contributing to intracellular Ca2+ overload. The protein kinases, PKC, MEK 1/2 and PI3K, are involved in the mechanism of action of BPA, which may indicate a crosstalk between the non-genomic initiation effects mediated by PLC/PKC/IP3R signaling and genomic responses of BPA mediated by the estrogen receptor (ESR). In vitro exposure to a higher concentration of BPA caused cell damage and plasma membrane injury with increased LDH release and TAG content; both effects were dependent on intracellular Ca2+ and mediated by IP3R. Furthermore, BPA potentially induced liver damage, as demonstrated by increased GGT activity. In conclusion, in vitro effect of BPA in a low concentration triggers cytosolic Ca2+ overload and activates downstream protein kinases pointing to a crosstalk between its non-genomic and genomic effects of BPA mediated by ESR. Moreover, in vitro exposure to a higher concentration of BPA caused intracellular Ca2+-dependent testicular cell damage and plasma membrane injury. This acute toxicity was reinforced by increased testicular LDH release and GGT activity in the liver.
Collapse
Affiliation(s)
- Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil; Département Biologie et Sciences de La Terre, Université de Caen Normandie, Caen, Normandie, France
| | - Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
14
|
de Oliveira VS, Castro AJG, Domingues JT, de Souza AZP, Scheffer DDL, Latini A, Soares CHL, Van Der Kraak G, Silva FRMB. A Brazilian pulp and paper mill effluent disrupts energy metabolism in immature rat testis and alters Sertoli cell secretion and mitochondrial activity. Anim Reprod 2020; 17:e20190116. [PMID: 32714452 PMCID: PMC7375872 DOI: 10.1590/1984-3143-ar2019-0116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our objective was to investigate whether the pulp and paper mill industry effluent could affect the testis and Sertoli cells in a fast exposure period. For this, the present study was carried out in immature rats at 10-day-old. Testis treated in vitro with 4% effluent for 1 h presented changes in energy metabolism in terms of a decrease in lactate content and glucose uptake. Elevation in GSH content, as an antioxidant defense mechanism, was also detected. Sertoli cells treated with 4% effluent for 1 hour showed alterations in the mitochondrial metabolism that favor the decoupling of oxidative phosphorylation and the generation of oxygen reactive species and also a time and concentration-dependent delay secretion of acidic vesicles. Our results showed that pollutants present in the pulp and paper mill effluents, in a short time of exposure, are capable of inducing alterations in important metabolic functions in the testis and in Sertoli cells that are crucial for the correct progression of spermatogenesis and fertility.
Collapse
Affiliation(s)
| | | | | | | | - Débora da Luz Scheffer
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Alexandra Latini
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
15
|
Batista-Silva H, Dambrós BF, Rodrigues K, Cesconetto PA, Zamoner A, Sousa de Moura KR, Gomes Castro AJ, Van Der Kraak G, Mena Barreto Silva FR. Acute exposure to bis(2-ethylhexyl)phthalate disrupts calcium homeostasis, energy metabolism and induces oxidative stress in the testis of Danio rerio. Biochimie 2020; 175:23-33. [PMID: 32417457 DOI: 10.1016/j.biochi.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
Bis(2-ethylhexyl)phthalate (BEHP) negatively affects testicular functions in different animal species, disturbing reproductive physiology and male fertility. The present study investigated the in vitro acute effect of BEHP on the mechanism of action of ionic calcium (Ca2+) homeostasis and energy metabolism. In addition, the effect of BEHP on oxidative stress was studied in vitro and in vivo in the testis of Danio rerio (D. rerio). Testes were treated in vitro for 30 min with 1 μM BEHP for 45Ca2+ influx measurements. Testes were also incubated with 1 μM BEHP for 1 h (in vitro) or 12 h (in vivo) for the measurements of lactate content, 14C-deoxy-d-glucose uptake, lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activity, total reactive oxygen species (ROS) production and lipid peroxidation. In addition, the effect of BEHP (1 μM) on GGT, glutamic oxaloacetic transferase (GOT) and glutamic pyruvic transferase (GPT) activity in the liver was evaluated after in vivo treatment for 12 h. BEHP disturbs the Ca2+ balance in the testis when given acutely in vitro. BEHP stimulated Ca2+ influx occurs through L-type voltage-dependent Ca2+ channels (L-VDCC), transitory receptor potential vaniloid (TRPV1) channels, reverse-mode Na+/Ca2+ exchanger (NCX) activation and inhibition of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). BEHP affected energy metabolism in the testis by decreasing the lactate content and LDH activity. In vitro and in vivo acute effects of BEHP promoted oxidative stress by increasing ROS production, lipid peroxidation and GGT activity in the testis. Additionally, BEHP caused liver damage by increasing GPT activity.
Collapse
Affiliation(s)
- Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Betina Fernanda Dambrós
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Patrícia Acordi Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
16
|
Jiménez-Torres C, Hernández-Kelly LC, Najimi M, Ortega A. Bisphenol A exposure disrupts aspartate transport in HepG2 cells. J Biochem Mol Toxicol 2020; 34:e22516. [PMID: 32363662 DOI: 10.1002/jbt.22516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
The liver is the organ responsible for bisphenol A (BPA) metabolism, an environmental chemical agent. Exposure to this toxin is associated with liver abnormalities and dysfunction. An important role played by excitatory amino acid transporters (EAATs) of the slc1 gene family has been reported in liver injuries. To gain insight into a plausible effect of BPA exposure in the liver glutamate/aspartate transport, using the human hepatoblastoma cell line HepG2, we report a BPA-dependent dynamic regulation of SLC1A3 and SLC1A2. Through the use of radioactive [3 H]- d-aspartate uptake experiments and immunochemical approaches, we characterized time and dose-dependent regulation of the protein levels and function of these transporters after acute exposure to BPA. An increase in nuclear Yin Yang 1 was found. These results suggest an important involvement of the EAATs in liver physiology and its disruption after acute BPA exposure.
Collapse
Affiliation(s)
- Catya Jiménez-Torres
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Mustapha Najimi
- Hepato-Gastroenterolgy Research Pole, Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université́ Catholique de Louvain, Brussels, Belgium
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
17
|
de Aguiar Greca SC, Kyrou I, Pink R, Randeva H, Grammatopoulos D, Silva E, Karteris E. Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation. J Clin Med 2020; 9:jcm9020405. [PMID: 32028606 PMCID: PMC7074564 DOI: 10.3390/jcm9020405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Endocrine-disrupting chemicals (EDCs) are environmental chemicals/toxicants that humans are exposed to, interfering with the action of multiple hormones. Bisphenol A (BPA) is classified as an EDC with xenoestrogenic activity with potentially adverse effects in reproduction. Currently, a significant knowledge gap remains regarding the complete spectrum of BPA-induced effects on the human placenta. As such, the present study examined the effects of physiologically relevant doses of BPA in vitro. Methods: qRT-PCR, Western blotting, immunofluorescence, ELISA, microarray analyses, and bioinformatics have been employed to study the effects of BPA using nonsyncytialised (non-ST) and syncytialised (ST) BeWo cells. Results: Treatment with 3 nM BPA led to an increase in cell number and altered the phosphorylation status of p38, an effect mediated primarily via the membrane-bound estrogen receptor (GPR30). Nonbiased microarray analysis identified 1195 and 477 genes that were differentially regulated in non-ST BeWo cells, whereas in ST BeWo cells, 309 and 158 genes had altered expression when treated with 3 and 10 nM, respectively. Enriched pathway analyses in non-ST BeWo identified a leptin and insulin overlap (3 nM), methylation pathways (10 nM), and differentiation of white and brown adipocytes (common). In the ST model, most significantly enriched were the nuclear factor erythroid 2-related factor 2 (NRF2) pathway (3 nM) and mir-124 predicted interactions with cell cycle and differentiation (10 nM). Conclusion: Collectively, our data offer a new insight regarding BPA effects at the placental level, and provide a potential link with metabolic changes that can have an impact on the developing fetus.
Collapse
Affiliation(s)
| | - Ioannis Kyrou
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK;
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ryan Pink
- Dept of Bio. & Med. Sci., Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Harpal Randeva
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Dimitris Grammatopoulos
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Elisabete Silva
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| | - Emmanouil Karteris
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| |
Collapse
|
18
|
Pawlicki P, Duliban M, Tuz R, Ptak A, Milon A, Gorowska-Wojtowicz E, Tworzydlo W, Płachno BJ, Bilinska B, Knapczyk-Stwora K, Kotula-Balak M. Do G-protein coupled estrogen receptor and bisphenol A analogs influence on Leydig cell epigenetic regulation in immature boar testis ex vivo? Anim Reprod Sci 2019; 207:21-35. [PMID: 31266599 DOI: 10.1016/j.anireprosci.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/16/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Organotypic culture of testicular fragments from 7-day-old male pigs (Polish White Large) was used. Tissues were treated with an antagonist of G-protein coupled estrogen receptor (GPER) (G-15; 10 nM), and bisphenol A (BPA), and its analogs (TBBPA, TCBPA; 10 nM) alone or in combination and analyzed using electron and light (stainings for collagen fibers, lipid droplet and autophagy markers) microscopes. In addition, mRNA and protein abundances and localization of molecules required for miRNA biogenesis and function (Drosha, Exportin 5; EXPO5, Dicer, and Argonaute 2; AGO2) were assessed together with calcium ion (Ca2+) and estradiol concentrations. Regardless of GPER blockade and/or treatment with BPA, TBBPA and TCBPA, there were no changes in Leydig cell morphology. Also, there were no changes in lipid droplet content and distribution but there were changes in lipid and autophagy protein abundance. In the interstitial tissue, there was an increase of collagen content, especially after treatment with BPA analogs and G-15 + BPA. Independent of the treatment, there was downregulation of EXPO5 and Dicer genes but the Drosha and AGO2 genes were markedly upregulated as a result of treatment with G-15 + BPA and TCBPA, respectively. There was always a lesser abundance of EXPO5 and AGO2 proteins regardless of treatment. There was markedly greater abundances of Drosha after G-15 + BPA treatment, and this also occurred for Dicer after treatment with G-15 + TCBPA. Immunolocalization of miRNA proteins indicated there was a cytoplasmic-nuclear pattern in control and treated cells. There was an increase of Ca2+ concentrations after treatment with G-15 and BPA analogs. Estradiol secretion decreased after antagonist and chemical treatments when these were administered alone, however, there was an increase in estradiol secretion after treatment with combinations of these compounds.
Collapse
Affiliation(s)
- P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - M Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - R Tuz
- Department of Swine and Small Animal Breeding, Institute of Animal Sciences, Agricultural University of Krakow, 24/28 Mickiewicza Ave., 30-059 Krakow, Poland
| | - A Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - K Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland; University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
19
|
Gallic acid protects against bisphenol A-induced alterations in the cardio-renal system of Wistar rats through the antioxidant defense mechanism. Biomed Pharmacother 2018; 107:1786-1794. [DOI: 10.1016/j.biopha.2018.08.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
|
20
|
Urriola-Muñoz P, Lagos-Cabré R, Patiño-García D, Reyes JG, Moreno RD. Bisphenol-A and Nonylphenol Induce Apoptosis in Reproductive Tract Cancer Cell Lines by the Activation of ADAM17. Int J Mol Sci 2018; 19:ijms19082238. [PMID: 30065191 PMCID: PMC6121659 DOI: 10.3390/ijms19082238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
Endocrine-disruptor chemicals (EDCs), such as bisphenol A (BPA) and nonylphenol (NP), have been widely studied due to their negative effects on human and wildlife reproduction. Exposure to BPA or NP is related to cell death, hormonal deregulation, and cancer onset. Our previous studies showed that both compounds induce A Disintegrin And Metalloprotease 17 (ADAM17) activation. Here, we show that BPA and NP induce apoptosis in prostate and ovary cancer cell lines, in a process dependent on ADAM17 activation. ADAM17 knockdown completely prevented apoptosis as well as the shedding of ADAM17 substrates. Both compounds were found to induce an increase in intracellular calcium (Ca2+) only in Ca2+-containing medium, with the NP-treated cells response being more robust than those treated with BPA. Additionally, using a phosphorylated protein microarray, we found that both compounds stimulate common intracellular pathways related to cell growth, differentiation, survival, and apoptosis. These results suggest that BPA and NP could induce apoptosis through ADAM17 by activating different intracellular signaling pathways that may converge in different cellular responses, one of which is apoptosis. These results confirm the capacity of these compounds to induce cell apoptosis in cancer cell lines and uncover ADAM17 as a key regulator of this process in response to EDCs.
Collapse
Affiliation(s)
- Paulina Urriola-Muñoz
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Raúl Lagos-Cabré
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Daniel Patiño-García
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Juan G Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
| | - Ricardo D Moreno
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| |
Collapse
|