1
|
Hashemi Karoii D, Azizi H, Darvari M, Qorbanee A, Hawezy DJ. Identification of novel cytoskeleton protein involved in spermatogenic cells and sertoli cells of non-obstructive azoospermia based on microarray and bioinformatics analysis. BMC Med Genomics 2025; 18:19. [PMID: 39863862 PMCID: PMC11762539 DOI: 10.1186/s12920-025-02087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis. METHODS The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes). To validate these findings, we cross-referenced our results with data from a single-cell genomics database. RESULTS In the microarray analyses of three human cases with different NOA spermatogenic cells, the expression of TBL3, MAGEA8, KRTAP3-2, KRT35, VCAN, MYO19, FBLN2, SH3RF1, ACTR3B, STRC, THBS4, and CTNND2 were upregulated, while expression of NTN1, ITGA1, GJB1, CAPZA1, SEPTIN8, and GOLGA6L6 were downregulated. There was an increase in KIRREL3, TTLL9, GJA1, ASB1, and RGPD5 expression in the Sertoli cells of three human cases with NOA, whereas expression of DES, EPB41L2, KCTD13, KLHL8, TRIOBP, ECM2, DVL3, ARMC10, KIF23, SNX4, KLHL12, PACSIN2, ANLN, WDR90, STMN1, CYTSA, and LTBP3 were downregulated. A combined analysis of Gene Ontology (GO) and STRING, were used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP) mitotic cytokinesis, cytoskeleton-dependent cytokinesis, and positive regulation of cell-substrate adhesion were significantly associated with differentially expressed genes (DEGs) in spermatogenic cells. Moleculare function (MF) of DEGs that were up/down regulated, it was found that tubulin bindings, gap junction channels, and tripeptide transmembrane transport were more significant in our analysis. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. Cell-cell junction assembly, cell-matrix adhesion, and regulation of SNARE complex assembly were significantly correlated with common DEGs for BP. In the study of MF, U3 snoRNA binding, and cadherin binding were significantly associated with common DEGs. CONCLUSION Our analysis, leveraging single-cell data, substantiated our findings, demonstrating significant alterations in gene expression patterns.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Maryam Darvari
- Department of Cellular and Molecular Biology, Islamic Azad University, Ghaemshahr branch, Ghaemshahr, Iran
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Koya KOY45, Iran
| | - Ali Qorbanee
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq
| | - Dawan Jamal Hawezy
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq
| |
Collapse
|
2
|
Wang L, Yan M, Bu T, Wu X, Li L, Silvestrini B, Sun F, Cheng CY, Chen H. Map-1a regulates Sertoli cell BTB dynamics through the cytoskeletal organization of microtubule and F-actin. Reprod Biol Endocrinol 2024; 22:36. [PMID: 38570783 PMCID: PMC10988971 DOI: 10.1186/s12958-024-01204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Microtubule-associated protein 1a (Map1a) is a microtubule (MT) regulatory protein that binds to the MT protofilaments in mammalian cells to promote MT stabilization. Maps work with MT cleavage proteins and other MT catastrophe-inducing proteins to confer MT dynamics to support changes in the Sertoli cell shape to sustain spermatogenesis. However, no functional studies are found in the literature to probe its role in spermatogenesis. Using an RNAi approach, coupled with the use of toxicant-induced testis (in vivo)- and Sertoli cell (in vitro)-injury models, RNA-Seq analysis, transcriptome profiling, and relevant bioinformatics analysis, immunofluorescence analysis, and pertinent biochemical assays for cytoskeletal organization, we have delineated the functional role of Map1a in Sertoli cells and testes. Map1a was shown to support MT structural organization, and its knockdown (KD) also perturbed the structural organization of actin, vimentin, and septin cytoskeletons as these cytoskeletons are intimately related, working in concert to support spermatogenesis. More importantly, cadmium-induced Sertoli cell injury that perturbed the MT structural organization across the cell cytoplasm was associated with disruptive changes in the distribution of Map1a and a surge in p-p38-MAPK (phosphorylated p38-mitogen-activated protein kinase) expression but not total p38-MAPK. These findings thus support the notion that p-p38-MAPK activation is involved in cadmium-induced Sertoli cell injury. This conclusion was supported by studies using doramapimod, a specific p38-MAPK phosphorylation (activation) inhibitor, which was capable of restoring the cadmium-induced disruptive structural organization of MTs across the Sertoli cell cytoplasm. In summary: this study provides mechanistic insights regarding restoration of toxicant-induced Sertoli cell and testis injury and male infertility.
Collapse
Affiliation(s)
- Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang 325027, Wenzhou, China
| | - Bruno Silvestrini
- Faculty of Pharmacy, University of Rome La Sapienza, P. Le Aldo Moro 5, 00185, Rome, Italy
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - C Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Wang L, Li L, Wu X, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. Semin Cell Dev Biol 2021; 121:53-62. [PMID: 33867214 DOI: 10.1016/j.semcdb.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China; The Population Council, Center for Biomedical Research, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
4
|
Wu S, Lv L, Li L, Wang L, Mao B, Li J, Shen X, Ge R, Wong CKC, Sun F, Cheng CY. KIF15 supports spermatogenesis via its effects on Sertoli cell microtubule, actin, vimentin, and septin cytoskeletons. Endocrinology 2021; 162:6102572. [PMID: 33453102 PMCID: PMC7883770 DOI: 10.1210/endocr/bqab010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 01/09/2023]
Abstract
Throughout spermatogenesis, cellular cargoes including haploid spermatids are required to be transported across the seminiferous epithelium, either toward the microtubule (MT) plus (+) end near the basement membrane at stage V, or to the MT minus (-) end near the tubule lumen at stages VI to VIII of the epithelial cycle. Furthermore, preleptotene spermatocytes, differentiated from type B spermatogonia, are transported across the Sertoli cell blood-testis barrier (BTB) to enter the adluminal compartment. Few studies, however, have been conducted to explore the function of MT-dependent motor proteins to support spermatid transport during spermiogenesis. Herein, we examined the role of MT-dependent and microtubule plus (+) end-directed motor protein kinesin 15 (KIF15) in the testis. KIF15 displayed a stage-specific expression across the seminiferous epithelium, associated with MTs, and appeared as aggregates on the MT tracks that aligned perpendicular to the basement membrane and laid across the entire epithelium. KIF15 also tightly associated with apical ectoplasmic specialization, displaying strict stage-specific distribution, apparently to support spermatid transport across the epithelium. We used a loss-of-function approach by RNAi to examine the role of KIF15 in Sertoli cell epithelium in vitro to examine its role in cytoskeletal-dependent Sertoli cell function. It was noted that KIF15 knockdown by RNAi that reduced KIF15 expression by ~70% in Sertoli cells with an established functional tight junction barrier impeded the barrier function. This effect was mediated through remarkable changes in the cytoskeletal organization of MTs, but also actin-, vimentin-, and septin-based cytoskeletons, illustrating that KIF15 exerts its regulatory effects well beyond microtubules.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xian Shen
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
- Correspondence: C. Yan Cheng, Ph.D., Senior Scientist, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
5
|
Wang L, Yan M, Li H, Wu S, Ge R, Wong CKC, Silvestrini B, Sun F, Cheng CY. The Non-hormonal Male Contraceptive Adjudin Exerts its Effects via MAPs and Signaling Proteins mTORC1/rpS6 and FAK-Y407. Endocrinology 2021; 162:5936120. [PMID: 33094326 PMCID: PMC8244566 DOI: 10.1210/endocr/bqaa196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (formerly called AF-2364), is a nonhormonal male contraceptive, since it effectively induces reversible male infertility without perturbing the serum concentrations of follicle stimulating hormone (FSH), testosterone, and inhibin B based on studies in rats and rabbits. Adjudin was shown to exert its effects preferentially by perturbing the testis-specific actin-rich adherens junction (AJ) at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES), thereby effectively inducing spermatid exfoliation. Adjudin did not perturb germ cell development nor germ cell function. Also, it had no effects on Sertoli cell-cell AJ called basal ectoplasmic specialization (basal ES), which, together with tight junction constitute the blood-testis barrier (BTB), unless an acute dose of adjudin was used. Adjudin also did not perturb the population of spermatogonial stem cells nor Sertoli cells in the testis. However, the downstream signaling protein(s) utilized by adjudin to induce transient male infertility remains unexplored. Herein, using adult rats treated with adjudin and monitored changes in the phenotypes across the seminiferous epithelium between 6 and 96 h in parallel with the steady-state protein levels of an array of signaling and cytoskeletal regulatory proteins, recently shown to be involved in apical ES, basal ES and BTB function. It was shown that adjudin exerts its contraceptive effects through changes in microtubule associated proteins (MAPs) and signaling proteins mTORC1/rpS6 and p-FAK-Y407. These findings are important to not only study adjudin-mediated male infertility but also the biology of spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
- Correspondence: C. Yan Cheng, PhD, Senior Scientist, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065. E-mail:
| |
Collapse
|
6
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol 2020; 36:249-265. [PMID: 33174615 DOI: 10.14670/hh-18-279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The microtubule (MT) cytoskeleton in Sertoli cells, a crucial cellular structure in the seminiferous epithelium of adult mammalian testes that supports spermatogenesis, was studied morphologically decades ago. However, its biology, in particular the involving regulatory biomolecules and the underlying mechanism(s) in modulating MT dynamics, are only beginning to be revealed in recent years. This lack of studies in delineating the biology of MT cytoskeletal dynamics undermines other studies in the field, in particular the plausible therapeutic treatment and management of male infertility and fertility since studies have shown that the MT cytoskeleton is one of the prime targets of toxicants. Interestingly, much of the information regarding the function of actin-, MT- and intermediate filament-based cytoskeletons come from studies using toxicant models including some genetic models. During the past several years, there have been some advances in studying the biology of MT cytoskeleton in the testis, and many of these studies were based on the use of pharmaceutical/toxicant models. In this review, we summarize the results of these findings, illustrating the importance of toxicant/pharmaceutical models in unravelling the biology of MT dynamics, in particular the role of microtubule-associated proteins (MAPs), a family of regulatory proteins that modulate MT dynamics but also actin- and intermediate filament-based cytoskeletons. We also provide a timely hypothetical model which can serve as a guide to design functional experiments to study how the MT cytoskeleton is regulated during spermatogenesis through the use of toxicants and/or pharmaceutical agents.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Wang L, Yan M, Wu S, Mao B, Wong CKC, Ge R, Sun F, Cheng CY. Microtubule Cytoskeleton and Spermatogenesis-Lesson From Studies of Toxicant Models. Toxicol Sci 2020; 177:305-315. [PMID: 32647867 PMCID: PMC7548287 DOI: 10.1093/toxsci/kfaa109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Studies have shown that mammalian testes, in particular the Sertoli cells, are highly susceptible to exposure of environmental toxicants, such as cadmium, perfluorooctanesulfonate, phthalates, 2,5-hexanedione and bisphenol A. However, important studies conducted by reproductive toxicologists and/or biologists in the past have been treated as toxicology reports per se. Yet, many of these studies provided important mechanistic insights on the toxicant-induced testis injury and reproductive dysfunction, relevant to the biology of the testis and spermatogenesis. Furthermore, recent studies have shown that findings obtained from toxicant models are exceedingly helpful tools to unravel the biology of testis function in particular spermatogenesis, including specific cellular events associated with spermatid transport to support spermiogenesis and spermiation. In this review, we critically evaluate some recent data, focusing primarily on the molecular structure and role of microtubules in cellular function, illustrating the importance of toxicant models to unravel the biology of microtubule cytoskeleton in supporting spermatogenesis, well beyond information on toxicology. These findings have opened up some potential areas of research which should be carefully evaluated in the years to come.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Siwen Wu
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|