1
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Oocyte maturation, blastocyst and embryonic development are mediated and enhanced via hormesis. Food Chem Toxicol 2024; 192:114941. [PMID: 39153727 DOI: 10.1016/j.fct.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).
Collapse
Affiliation(s)
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
2
|
Lucia Dos Santos Silva R, de Sousa Barberino R, Tavares de Matos MH. Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: A review. Theriogenology 2023; 207:110-122. [PMID: 37290274 DOI: 10.1016/j.theriogenology.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The in vitro culture systems of ovarian preantral follicles have been developed for studying follicular and oocyte growth, for future use of immature oocytes as sources of fertilizable oocytes and for screening ovarian toxic substances. One of the key limitations of the in vitro culture of preantral follicles is the oxidative stress by accumulation of reactive oxygen species (ROS), which can impair follicular development and oocyte quality. Several factors are associated with oxidative stress in vitro, which implies the need for a rigorous control of the conditions as well as addition of antioxidant agents to the culture medium. Antioxidant supplementation can minimize or eliminate the damage caused by ROS, supporting follicular survival and development and producing mature oocytes competent for fertilization. This review focuses on the use of antioxidants and their role in preventing follicular damage caused by oxidative stress in the in vitro culture of preantral follicles.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil.
| |
Collapse
|
3
|
Zhao Y, Zhang Y, Liu D, Feng H, Wang X, Su J, Yao Y, Ng EHY, Yeung WSB, Li RHW, Rodriguez-Wallberg KA, Liu K. Identification of curcumin as a novel potential drug for promoting the development of small ovarian follicles for infertility treatment. PNAS NEXUS 2022; 1:pgac108. [PMID: 36741430 PMCID: PMC9896916 DOI: 10.1093/pnasnexus/pgac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
In-vitro fertilization is an effective treatment for various causes of infertility. However, management of women with poor ovarian response or premature ovarian insufficiency remains challenging because these women have underdeveloped small ovarian follicles that do not respond to hormone treatment. In-vitro activation of small follicles has been developed but its efficiency has much room for improvement. In the current study, we provide several lines of evidence showing that curcumin, an FDA-approved traditional medicine, can specifically promote the development of mouse ovarian follicles from the primary to secondary stage, which greatly potentiates these small follicles for subsequent in-vivo development into antral follicles that can be ovulated. Mechanistically, we show that curcumin promotes the proliferation and differentiation of granulosa cells and the growth of oocytes by activating the phosphatidylinositol 3 kinase (PI3K) signaling pathway. Most importantly, we show that in-vitro treatment of human ovarian tissues with curcumin can promote the in-vivo survival and development of small human ovarian follicles, showing that curcumin can be used as a potential drug to increase the success rate of in-vitro activation of small human follicles. We thus identify curcumin as a novel potential drug for promoting the development of small human ovarian follicles for infertility treatment.
Collapse
Affiliation(s)
- Yu Zhao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yihui Zhang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Dongteng Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Haiwei Feng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China
| | - Xiaohui Wang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China
| | - Jiajun Su
- Department of Anatomical Pathology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China
| | - Ernest H Y Ng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Raymond H W Li
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | | | - Kui Liu
- To whom correspondence should be addressed:
| |
Collapse
|
4
|
Singh A, Dasgupta S, Bhattacharya A, Mukherjee G, Chaudhury K. Therapeutic potential of curcumin in endometrial disorders: Current status and future perspectives. Drug Discov Today 2021; 27:900-911. [PMID: 34775103 DOI: 10.1016/j.drudis.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
Endometrial disorders collectively encompass a broad spectrum of pathologies, including but not limited to endometriosis, endometrial cancer and endometritis. The current therapeutic management of these diseases is associated with several limitations. This has prompted interest in the use of plant-based bioactive compounds as alternative strategies to achieve high therapeutic efficacy and avoid adverse effects. In this context, curcumin, a polyphenol abundantly present in turmeric, is gaining increasing attention for its therapeutic potential to restore homeostasis in endometrial dysfunctionality. We comprehensively review the multifaceted role of curcumin, discussing mechanistic insights in various endometrial pathologies. We also provide an in-depth analysis of the concerns and challenges associated with the role of curcumin in endometrial research and outline a road map for future investigations.
Collapse
Affiliation(s)
- Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Anindita Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
5
|
B SAMPATHKUMAR, NANDI S, GUPTA PSP, MONDAL S, V GIRISHKUMAR. Influence of curcumin and carbazole on ovine ovarian preantral follicle and granulosa cell functions. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i7.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study was undertaken to study the effect of plant bioactive compounds curcumin and carbazole on sheep ovarian functions. In the present study, both the bioactive compounds were tested at different levels (Control, T1-1 μM, T2-5 μM, T3-10 μM, T4- 25 μM, T5- 50μM, T6-100 μM) on preantral follicle (PF) growth rate, survival rate (6 days culture), granulosa cell (GC) number increment (2 days culture) and estradiol production (5 days GC culture spent media). Curcumin had shown a significantly higher PF survival rate (%), i.e. 74.3±1.5, 76.3±1.4 at 10 and 25 μM levels respectively. Similarly, higher PF growth rates (μm per day), i.e. 16.1±0.9 was observed at 50 μM levels. Similarly, curcumin was effective @ 50 μM level to increase the granulosa cell number as well as estradiol production with a mean granulosa cell number (×105) and estradiol production (pg) values of 1.55±0.04 and 85.3±3.3 respectively. Likewise, carbazole was effective at the level of 25 μM to increase the PF growth rate (μm per day), survival rate (%)with mean values of 74.3±1.3, 12.1±0.9. Similarly, carbazole was effective at 50 μM dose levels in the granulosa cell number increment (×105) with a mean value of 1.57±0.02. No significant change in estradiol production was observed in carbazole treated group.
Collapse
|
6
|
Lin Z, Liu H, Yang C, Zheng H, Zhang Y, Su W, Shang J. Curcumin mediates autophagy and apoptosis in granulosa cells: a study of integrated network pharmacology and molecular docking to elucidate toxicological mechanisms. Drug Chem Toxicol 2021; 45:2411-2423. [PMID: 34315305 DOI: 10.1080/01480545.2021.1956941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Curcumin (Cur) is a flavonoid derived from Curcuma longa L. that has been shown to have a variety of biological activities, but some previous studies have described its non-negligible negative effects on female reproduction and embryo development. To further explore the toxic stress effect, this study investigated apoptosis and autophagy of healthy buffalo (Bubalus bubalis) derived granulosa cells (GCs) exposed to Cur and/or autophagy inhibitors. Results showed that Cur declined viability of GCs in a concentration-dependent manner. Apoptosis was observed in Cur-treated GCs from 3 h. Meanwhile, under Cur stress, autophagosomes accumulated in cells, and the expression levels of autophagy key proteins LC3 and Beclin 1 were up-regulated, suggesting that Cur could induce autophagy in GCs. Early autophagy inhibitor 3-methyladenine (3-MA) increased the apoptosis rate of Cur exposed GCs, but the autophagosome degradation inhibitor chloroquine (CQ) had no effect on the apoptosis rate. The network pharmacological and molecular docking analysis indicated that the perturbation of IKK/NF-κB might be the cause of Cur toxicity toward GCs. This study unveiled another side of Cur pharmacological effects that programmed cell death can be induced by Cur in GCs, suggesting that it should be prudent to use Cur as a clinical drug for its side effects on the female reproductive system.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Chunyan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Haiying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yu Zhang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jianghua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
7
|
Kilinc L, Uz YH. Protective effects of curcumin against methotrexate-induced testicular damage in rats by suppression of the p38-MAPK and nuclear factor-kappa B pathways. Clin Exp Reprod Med 2021; 48:211-220. [PMID: 34352168 PMCID: PMC8421662 DOI: 10.5653/cerm.2020.04105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Objective The present study aimed to investigate the possibility that curcumin (CMN) protects against methotrexate (MTX)-induced testicular damage by affecting the phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Methods Eighteen male Wistar albino rats were randomly divided into three groups. The control group was given an intragastric administration of dimethyl sulfoxide (DMSO) daily for 14 days, the MTX group was given a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day, and the MTX+CMN group was given intragastric CMN (100 mg/kg/day, dissolved in DMSO) for 14 days and a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day. At the end of the experiment, all animals were sacrificed and the testicular tissues were removed for morphometry, histology, and immunohistochemistry. Body and testicular weights were measured. Results Body weights, seminiferous tubule diameter, and germinal epithelium height significantly decreased in the MTX group compared to the control group. Whereas, the number of histologically damaged seminiferous tubules and interstitial space width significantly increased in the MTX group. In addition, the number of p-p38 MAPK immunopositive cells and the immunoreactivity of NF-κB also increased in the MTX group compared to the control group. CMN improved loss of body weight, morphometric values, and histological damage due to MTX. CMN also reduced the number of p-p38 MAPK immunopositive cells and the NF-κB immunoreactivity. Conclusion CMN may reduce MTX-induced testicular damage by suppressing the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Leyla Kilinc
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yesim Hulya Uz
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
8
|
Moreira-Pinto B, Costa L, Felgueira E, Fonseca BM, Rebelo I. Low Doses of Resveratrol Protect Human Granulosa Cells from Induced-Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040561. [PMID: 33916585 PMCID: PMC8065718 DOI: 10.3390/antiox10040561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Resveratrol is a phytoalexin present in plant-derived foods, including grape’s skin, cocoa, and peanuts. Evidence suggests that it has beneficial effects on human health because of its antioxidant properties. However, there is limited knowledge about the part played by resveratrol in ovarian function. In this paper, the influence of resveratrol on granulosa cells (GC) was evaluated. In addition to being the main estradiol producers, GC are in direct contact with the oocyte, playing a fundamental role in its growth and development. The cell line COV434 and human granulosa cells (hGC), obtained from women undergoing assisted reproductive technology (ART), were used. GC were treated with resveratrol (0.001–20 μM) at different times (24–72 h). Low concentrations of this compound suggest a protective role, as they tend to reduce ROS/RNS formation after inducement of stress. On the contrary, high concentrations of resveratrol affect GC viability and steroidogenic function. As it may act as a direct modulator of GC oxidative balance, this work may help to clarify the impact of resveratrol on GC and the usefulness of this antioxidant as adjunct to infertility treatments.
Collapse
Affiliation(s)
- Beatriz Moreira-Pinto
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
| | - Lia Costa
- Unidade de Medicina da Reprodução Dra, Ingeborg Chaves-Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal; (L.C.); (E.F.)
| | - Eduarda Felgueira
- Unidade de Medicina da Reprodução Dra, Ingeborg Chaves-Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal; (L.C.); (E.F.)
| | - Bruno M. Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
- Correspondence: ; Tel.: +351-220428557
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; (B.M.-P.); (I.R.)
| |
Collapse
|
9
|
Bhardwaj JK, Panchal H, Saraf P. Ameliorating Effects of Natural Antioxidant Compounds on Female Infertility: a Review. Reprod Sci 2020; 28:1227-1256. [PMID: 32935256 DOI: 10.1007/s43032-020-00312-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
The prevalence of female infertility cases has been increasing at a frightening rate, affecting approximately 48 million women across the world. However, oxidative stress has been recognized as one of the main mediators of female infertility by causing various reproductive pathologies in females such as endometriosis, PCOS, preeclampsia, spontaneous abortion, and unexplained infertility. Nowadays, concerned women prefer dietary supplements with antioxidant properties over synthetic drugs as a natural way to lessen the oxidative stress and enhance their fertility. Therefore, the current review is an attempt to explore the efficacy of various natural antioxidant compounds including vitamins, carotenoids, and plant polyphenols and also of some medicinal plants in improving the fertility status of females. Our summarization of recent findings in the current article would pave the way toward the development of new possible antioxidant therapy to treat infertility in females. Natural antioxidant compounds found in fruits, vegetables, and other dietary sources, alone or in combination with other antioxidants, were found to be effective in ameliorating the oxidative stress-mediated infertility problems in both natural and assisted reproductive settings. Numerous medicinal plants showed promising results in averting the various reproductive disorders associated with female infertility, suggesting a plant-based herbal medicine to treat infertility. Although optimum levels of natural antioxidants have shown favorable results, however, their excessive intake may have adverse health impacts. Therefore, larger well-designed, dose-response studies in humans are further warranted to incorporate natural antioxidant compounds into the clinical management of female infertility.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|