1
|
Pilsova Z, Pilsova A, Zelenkova N, Klusackova B, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its potential as a possible therapeutic agent in male reproduction. Front Endocrinol (Lausanne) 2024; 15:1427069. [PMID: 39324123 PMCID: PMC11423738 DOI: 10.3389/fendo.2024.1427069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that belongs to the group of gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). H2S plays a pivotal role in male reproductive processes. It is produced in various tissues and cells of the male reproductive system, including testicular tissue, Leydig and Sertoli cells, epididymis, seminal plasma, prostate, penile tissues, and sperm cells. This review aims to summarize the knowledge about the presence and effects of H2S in male reproductive tissues and outline possible therapeutic strategies in pathological conditions related to male fertility, e. g. spermatogenetic disorders and erectile dysfunction (ED). For instance, H2S supports spermatogenesis by maintaining the integrity of the blood-testicular barrier (BTB), stimulating testosterone production, and providing cytoprotective effects. In spermatozoa, H2S modulates sperm motility, promotes sperm maturation, capacitation, and acrosome reaction, and has significant cytoprotective effects. Given its vasorelaxant effects, it supports the erection of penile tissue. These findings suggest the importance and therapeutic potential of H2S in male reproduction, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Zuzana Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Natalie Zelenkova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Barbora Klusackova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Marketa Sedmikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Jing J, Ouyang L, Zhang H, Liang K, Ma R, Ge X, Tang T, Zhao S, Xue T, Shen J, Ma J, Li Z, Wu J, Yang Y, Zhao W, Zheng L, Qian Z, Sun S, Ge Y, Chen L, Li C, Yao B. Omega-3 polyunsaturated fatty acids and its metabolite 12-HEPE rescue busulfan disrupted spermatogenesis via target to GPR120. Cell Prolif 2024; 57:e13551. [PMID: 37743695 PMCID: PMC10849791 DOI: 10.1111/cpr.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Busulfan is an antineoplastic, which is always accompanied with the abnormal of spermatogonia self-renewal and differentiation. It has been demonstrated that the omega-3 polyunsaturated fatty acids (PUFAs) benefits mature spermatozoa. However, whether omega-3 can protect endogenous spermatogonia and the detailed mechanisms are still unclear. Evaluate of spermatogenesis function (in vivo) were examined by histopathological analysis, immunofluorescence staining, and western blotting. The levels of lipid metabolites in testicular tissue were determined via liquid chromatography. We investigated the effect of lipid metabolites on Sertoli cells provided paracrine factors to regulate spermatogonia proliferation and differentiation using co-culture system. In our study, we showed that omega-3 PUFAs significantly improved the process of sperm production and elevated the quantity of both undifferentiated Lin28+ spermatogonia and differentiated c-kit+ spermatogonia in a mouse model where spermatogenic function was disrupted by busulfan. Mass spectrometry revealed an increase in the levels of several omega-3 metabolites in the testes of mice fed with omega-3 PUFAs. The eicosapentaenoic acid metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) up-regulated bone morphogenic protein 4 (BMP4) expression through GPR120-ERK1/2 pathway activation in Sertoli cells and restored spermatogonia proliferation and differentiation. Our study provides evidence that omega-3 PUFAs metabolite 12-HEPE effectively protects spermatogonia and reveals that GPR120 might be a tractable pharmacological target for fertility in men received chemotherapy or severe spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Jun Jing
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Lei Ouyang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
| | - Hong Zhang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Kuan Liang
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Xie Ge
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Ting Tang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Shanmeizi Zhao
- School of Life ScienceNanjing Normal UniversityNanjingChina
| | - Tongmin Xue
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital)Yangzhou UniversityYangzhouChina
| | - Jiaming Shen
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Jinzhao Ma
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Zhou Li
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Jing Wu
- Core Laboratory, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Yang Yang
- Basic Medical Laboratory, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Wei Zhao
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Lu Zheng
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Zhang Qian
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Shanshan Sun
- School of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yifeng Ge
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Li Chen
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Bing Yao
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
- School of Life ScienceNanjing Normal UniversityNanjingChina
| |
Collapse
|
3
|
Zhang W, Chen SJ, Guo LY, Zhang Z, Zhang JB, Wang XM, Meng XB, Zhang MY, Zhang KK, Chen LL, Li YW, Wen Y, Wang L, Hu JH, Bai YY, Zhang XJ. Nitric oxide synthase and its function in animal reproduction: an update. Front Physiol 2023; 14:1288669. [PMID: 38028794 PMCID: PMC10662090 DOI: 10.3389/fphys.2023.1288669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Nitric oxide (NO), a free radical labile gas, is involved in the regulation of various biological functions and physiological processes during animal reproduction. Recently, increasing evidence suggests that the biological role and chemical fate of NO is dependent on dynamic regulation of its biosynthetic enzyme, three distinct nitric oxide synthase (NOS) according to their structure, location and function. The impact of NOS isoforms on reproductive functions need to be timely elucidated. Here, we focus on and the basic background and latest studies on the development, structure, importance inhibitor, location pattern, complex functions. Moreover, we summarize the exactly mechanisms which involved some cell signal pathways in the regulation of NOS with cellular and molecular level in the animal reproduction. Therefore, this growing research area provides the new insight into the important role of NOS male and female reproduction system. It also provides the treatment evidence on targeting NOS of reproductive regulation and diseases.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Su juan Chen
- Department of Life Science and Technology, Xinxiang Medical College, Xinxiang, Henan, China
| | - Li ya Guo
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jia bin Zhang
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Xiao meng Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiang bo Meng
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Min ying Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ke ke Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lin lin Chen
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Yi wei Li
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yuliang Wen
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lei Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jian he Hu
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yue yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, China
| | - Xiao jian Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
4
|
Qian Z, Li C, Zhao S, Zhang H, Ma R, Ge X, Jing J, Chen L, Ma J, Yang Y, Zheng L, Zhang K, He Z, Xue M, Lin Y, Jueraitetibaike K, Feng Y, Cao C, Tang T, Sun S, Teng H, Zhao W, Yao B. Age-related elevation of O-GlcNAc causes meiotic arrest in male mice. Cell Death Discov 2023; 9:163. [PMID: 37188682 DOI: 10.1038/s41420-023-01433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
In recent years, the postponement of childbearing has become a critical social issue. Male fertility is negatively associated with age because of testis aging. Spermatogenesis is impaired with age, but the molecular mechanism remains unknown. The dynamic posttranslational modification O-linked N-acetylglucosamine (O-GlcNAc), which is a type of monosaccharide modification, has been shown to drive the process of aging in various systems, but it has not yet been investigated in the testis and male reproductive aging. Thus, this study aims to investigate the alteration of O-GlcNAc with aging and explore the role of O-GlcNAc in spermatogenesis. Here, we demonstrate that the decline in spermatogenesis in aged mice is associated with elevation of O-GlcNAc. O-GlcNAc is specifically localized in differentiating spermatogonia and spermatocytes, indicating its crucial role in meiotic initiation and progression. Mimicking the age-related elevation of O-GlcNAc in young mice by disabling O-GlcNAcase (OGA) using the chemical inhibitor Thiamet-G can recapitulate the impairment of spermatogenesis in aged mice. Mechanistically, the elevation of O-GlcNAc in the testis leads to meiotic pachytene arrest due to defects in synapsis and recombination. Furthermore, decreasing O-GlcNAc in aged testes using an O-GlcNAc transferase (OGT) inhibitor can partially rescue the age-related impairment of spermatogenesis. Our results highlight that O-GlcNAc, as a novel posttranslational modification, participates in meiotic progression and drives the impairment of spermatogenesis during aging.
Collapse
Affiliation(s)
- Zhang Qian
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hong Zhang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Li Chen
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yang Yang
- Basic Medical Laboratory, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kemei Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Zhaowanyue He
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Ying Lin
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kadiliya Jueraitetibaike
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yuming Feng
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chun Cao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ting Tang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Shanshan Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hui Teng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Wei Zhao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
5
|
Zhao YC, Wang CC, Yang JY, Li XY, Yanagita T, Xue CH, Zhang TT, Wang YM. N-3 PUFA Deficiency from Early Life to Adulthood Exacerbated Susceptibility to Reactive Oxygen Species-Induced Testicular Dysfunction in Adult Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6908-6919. [PMID: 37098125 DOI: 10.1021/acs.jafc.2c07328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Homeostasis of reactive oxygen species is required to maintain sperm maturation and capacitation. Docosahexaenoic acid (DHA) is accumulated in testicles and spermatozoa and has the ability to manipulate the redox status. The effects of dietary n-3 polyunsaturated fatty acid (n-3 PUFA) deficiency from early life to adulthood on the physiological and functional properties of males under the redox imbalance of testicular tissue deserve attention. The consecutive injection of hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) for 15 days to induce oxidative stress in testicular tissue was used to elucidate the consequences of testicular n-3 PUFA deficiency. The results indicated that reactive oxygen species treatment in adult male mice with DHA deficiency in the testis could reduce spermatogenesis and disrupt sex hormone production, as well as trigger testicular lipid peroxidation and tissue damage. N-3 PUFA deficiency from early life to adulthood resulted in higher susceptibility to testicular dysfunction in the germinal function of supplying germ cells and the endocrine role of secreting hormones through the mechanism of aggravating mitochondria-mediated apoptosis and destruction of blood testicular barrier under oxidative stress, which might provide a basis for humans to reduce susceptibility to chronic disease and maintain reproductive health in adulthood through dietary interventions of n-3 PUFAs.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| |
Collapse
|
6
|
Mao Z, Li H, Zhao XL, Zeng XH. Hydrogen sulfide protects Sertoli cells against toxicant Acrolein-induced cell injury. Food Chem Toxicol 2023; 176:113784. [PMID: 37059385 DOI: 10.1016/j.fct.2023.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Acrolein (ACR), a highly toxic α,β-unsaturated aldehyde, is considered to be a common mediator behind the reproductive injury induced by various factors. However, the understanding of its reproductive toxicity and prevention in reproductive system is limited. Given that Sertoli cells provide the first-line defense against various toxicants and that dysfunction of Sertoli cell causes impaired spermatogenesis, we, therefore, examined ACR cytotoxicity in Sertoli cells and tested whether hydrogen sulfide (H2S), a gaseous mediator with potent antioxidative actions, could have a protective effect. Exposure of Sertoli cells to ACR led to cell injury, as indicated by reactive oxygen species (ROS) generation, protein oxidation, P38 activation and ultimately cell death that was prevented by antioxidant N-acetylcysteine (NAC). Further studies revealed that ACR cytotoxicity on Sertoli cells was significantly exacerbated by the inhibition of H2S-synthesizing enzyme cystathionine γ-lyase (CSE), while significantly suppressed by H2S donor Sodium hydrosulfide (NaHS). It was also attenuated by Tanshinone IIA (Tan IIA), an active ingredient of Danshen that stimulated H2S production in Sertoli cells. Apart from Sertoli cells, H2S also protected the cultured germ cells from ACR-initiated cell death. Collectively, our study characterized H2S as endogenous defensive mechanism against ACR in Sertoli cells and germ cells. This property of H2S could be used to prevent and treat ACR-related reproductive injury.
Collapse
Affiliation(s)
- Zhimin Mao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| | - Haitao Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiu-Ling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
7
|
Hu Y, Hu H, Yin L, Wang L, Luo K, Luo N. Arachidonic acid impairs the function of the blood-testis barrier via triggering mitochondrial complex-ROS-P38 MAPK axis in hyperthermal Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114598. [PMID: 36774800 DOI: 10.1016/j.ecoenv.2023.114598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The death of Sertoli cells (SCs) under condition of heat stress (HS) affects spermatogenesis and is associated with impaired function of the blood-testis barrier (BTB). The fatty acid arachidonic acid (AA) is essential for the maintenance of cellular function. However, excessive release of AA during HS may adversely affect the reproductive function. The molecular mechanisms through which AA modulates the BTB in SCs are unclear. In this study, we found that 100 µM AA damaged testicular morphology and accelerated SC apoptosis during HS, reducing the stability of tight junction proteins (TJPs), shown by measurement of the levels of Claudin 11, 5, Occludin, and trans-epithelial electrical resistance (TEER). It was also found that AA adversely affected TJPs by increasing the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), activating p38 mitogen-activated protein kinases (P38 MAPK) and reducing mitochondria DNA (mtDNA) and the expression of mitochondrial complexes I and III. In contrast, pretreatment with SB203508 (a P38 MAPK inhibitor), Rotenone (an inhibitor of complex I) and Antimycin A1 (an inhibitor of complex III) reversed TJPs degradation induced by AA. Interestingly, pretreatment of cells with 10 µM Baicalein, a 12/15 lipoxygenase (12/15-LOX) -dependent inhibitor of AA production, protected against AA-induced TJPs degradation, restored mitochondrial function, and reduced apoptosis. These results suggested an intriguing link between the induction of TJPs degradation induced by AA overload and mitochondrial antioxidant function during HS, which was found to be regulated by the mitochondrial complex-ROS-P38 MAPK axis.
Collapse
Affiliation(s)
- Yu Hu
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Han Hu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ling Yin
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - KeYan Luo
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - NanJian Luo
- Department of Preclinical Medicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
8
|
Chen Z, Lu Q, Wang J, Cao X, Wang K, Wang Y, Wu Y, Yang Z. The function of omega-3 polyunsaturated fatty acids in response to cadmium exposure. Front Immunol 2022; 13:1023999. [PMID: 36248838 PMCID: PMC9558127 DOI: 10.3389/fimmu.2022.1023999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Throughout history, pollution has become a part of our daily life with the improvement of life quality and the advancement of industry and heavy industry. In recent years, the adverse effects of heavy metals, such as cadmium (Cd), on human health have been widely discussed, particularly on the immune system. Here, this review summarizes the available evidence on how Cd exposure may affect health. By analyzing the general manifestations of inflammation caused by Cd exposure, we find that the role of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in vivo can counteract Cd-induced harm. Additionally, we elucidate the effects of n-3 PUFAs on the immune system, and analyze their prophylactic and therapeutic effects on Cd exposure. Overall, this review highlights the role of n-3 PUFAs in the pathological changes induced by Cd exposure. Although n-3 PUFAs remain to be verified whether they can be used as therapeutic agents, as rehabilitation therapy, supplementation with n-3 PUFAs is reliable and effective.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Zhangping Yang,
| |
Collapse
|
9
|
Zhang Y, Wu X, Zhu K, Liu S, Yang Y, Yuan D, Wang T, He Y, Dun Y, Wu J, Zhang C, Zhao H. Icariin attenuates perfluorooctane sulfonate-induced testicular toxicity by alleviating Sertoli cell injury and downregulating the p38MAPK/MMP9 pathway. Food Funct 2022; 13:3674-3689. [PMID: 35262540 DOI: 10.1039/d1fo04135e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is widely recognized as causing Sertoli cell injury and testicular toxicity in males. Icariin is a flavonoid from Epimedium, which effectively improves spermatogenesis disturbance induced by several factors in clinic. However, it is unclear whether icariin improves PFOS-induced testicular toxicity. In vivo, fifty-two male mice were randomly separated into four groups: normal control group, model group, and low and high doses of icariin-treated groups, with 13 mice in each group. Except for the normal control group, the mice in the model group and icariin-treated groups were administered PFOS (10 mg kg-1) by gavage daily for 28 consecutive days, and concurrently treated with a diet containing different doses of icariin (0, 5 or 20 mg kg-1). In vitro, TM4 cells were treated with 150 μM PFOS to induce Sertoli cell injury, and were then utilized for icariin treatment. Our results demonstrated that icariin attenuated PFOS-induced testicular toxicity by increasing the testicular, epididymal and seminal vesicle weights, epididymal and seminal vesicle indices, sperm parameters, and seminiferous epithelium height. In addition, icariin improved the PFOS-induced blood-testis barrier (BTB) disruption by alleviating the Sertoli cell junctional injury, but without affecting Sertoli cell numbers in the testis of mice. Moreover, icariin increased the expression levels of tight junction proteins (ZO-1, Occludin and Claudin-11) and gap junction proteins (CX43 and p-CX43), and decreased the expression levels of p-p38MAPK and matrix metalloproteinase 9 (MMP9) both in vivo and in vitro. Furthermore, alleviation of the Sertoli cell injury by icariin exerted similar effects as SB203580 (an inhibitor of p38MAPK) in TM4 cells. This study revealed that icariin effectively reduces PFOS-induced testicular toxicity by alleviating the Sertoli cell injury and downregulating the p38MAPK/MMP9 pathway, indicating that icariin may be an attractive dietary supplement for the intervention of PFOS-induced testicular dysfunction.
Collapse
Affiliation(s)
- Yan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
- Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Xiaoping Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
- Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Kaili Zhu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Shangyu Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Yuan Yang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Ting Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Yaoyan Dun
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Jie Wu
- Material Analysis and Testing Center, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Changcheng Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
- Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Haixia Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China.
- Medical College, China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
10
|
Wang S, Qian Z, Ge X, Li C, Xue M, Liang K, Ma R, Ouyang L, Zheng L, Jing J, Cao S, Zhang Y, Yang Y, Chen Y, Ma J, Yao B. LncRNA Tug1 maintains blood-testis barrier integrity by modulating Ccl2 expression in high-fat diet mice. Cell Mol Life Sci 2022; 79:114. [PMID: 35103851 PMCID: PMC11073184 DOI: 10.1007/s00018-022-04142-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023]
Abstract
Sertoli cells are essential for spermatogenesis in the testicular seminiferous tubules by forming blood-testis barrier (BTB) and creating a unique microenvironment for spermatogenesis. Many lncRNAs have been reported to participate in spermatogenesis. However, the role of long noncoding RNAs (lncRNAs) in Sertoli cells has rarely been examined. Herein, we found that a high-fat diet (HFD) decreased sperm quality, impaired BTB integrity and resulted in accumulation of saturated fatty acids (SFAs), especially palmitic acid (PA), in mouse testes. PA decreased the expression of tight junction (TJ)-related proteins, increased permeability and decreased transepithelial electrical resistance (TER) in primary Sertoli cells and TM4 cells. Moreover, lncRNA Tug1 was found to be involved in PA-induced BTB disruption by RNA-seq. Tug1 depletion distinctly impaired the TJs of Sertoli cells and overexpression of Tug1 alleviated the disruption of BTB integrity induced by PA. Moreover, Ccl2 was found to be a downstream target of Tug1, and decreased TJ-related protein levels and TER and increased FITC-dextran permeability in vitro. Furthermore, the addition of Ccl2 damaged BTB integrity after overexpression of Tug1 in the presence of PA. Mechanistically, we found that Tug1 could directly bind to EZH2 and regulate H3K27me3 occupancy in the Ccl2 promoter region by RNA immunoprecipitation and chromatin immunoprecipitation assays. Our study revealed an important role of Tug1 in the BTB integrity of Sertoli cells and provided a new view of the role of lncRNAs in male infertility.
Collapse
Affiliation(s)
- Shuxian Wang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Zhang Qian
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kuan Liang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lei Ouyang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Siyuan Cao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yu Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yang Yang
- Basic Medical Laboratory, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|