1
|
Wang X, Liu Y, Wang J, Lu X, Guo Z, Lv S, Sun Z, Gao T, Gao F, Yuan J. Mitochondrial Quality Control in Ovarian Function: From Mechanisms to Therapeutic Strategies. Reprod Sci 2024:10.1007/s43032-024-01634-4. [PMID: 38981995 DOI: 10.1007/s43032-024-01634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Mitochondrial quality control plays a critical role in cytogenetic development by regulating various cell-death pathways and modulating the release of reactive oxygen species (ROS). Dysregulated mitochondrial quality control can lead to a broad spectrum of diseases, including reproductive disorders, particularly female infertility. Ovarian insufficiency is a significant contributor to female infertility, given its high prevalence, complex pathogenesis, and profound impact on women's health. Understanding the pathogenesis of ovarian insufficiency and devising treatment strategies based on this understanding are crucial. Oocytes and granulosa cells (GCs) are the primary ovarian cell types, with GCs regulated by oocytes, fulfilling their specific energy requirements prior to ovulation. Dysregulation of mitochondrial quality control through gene knockout or external stimuli can precipitate apoptosis, inflammatory responses, or ferroptosis in both oocytes and GCs, exacerbating ovarian insufficiency. This review aimed to delineate the regulatory mechanisms of mitochondrial quality control in GCs and oocytes during ovarian development. This study highlights the adverse consequences of dysregulated mitochondrial quality control on GCs and oocyte development and proposes therapeutic interventions for ovarian insufficiency based on mitochondrial quality control. These insights provide a foundation for future clinical approaches for treating ovarian insufficiency.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Basic Medical, Jining Medical University, Jining, China
| | - Yuxin Liu
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinzheng Wang
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xueyi Lu
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhipeng Guo
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Shenmin Lv
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhenyu Sun
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Tan Gao
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Fei Gao
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
2
|
Jitngamsujarit S, Salang L, Saengboonmee C, Sorin S, Thithuan K, Pongsritasana T, Sukkasame S. Advancing Age May Decrease Mitochondrial Activity in Cumulus Cells. J Clin Med 2024; 13:2800. [PMID: 38792342 PMCID: PMC11122456 DOI: 10.3390/jcm13102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Background: The goal of this study was to compare mitochondrial activity in cumulus cells (CCs) between young and advancing-aged women, the factors that affect mitochondrial activity, and their association with blastocyst quality. Materials and methods: This prospective study included 80 infertile women who underwent ICSI between May and October 2023. Participants were divided into two groups: older and younger than 38. The oocyte mitochondrial activity from CCs was evaluated using MitoTracker, and the mean fluorescence intensity (MFI) was also evaluated. Results: The univariate and multivariate analyses revealed a significant difference in the MFI between the woman ≥ 38 age group and the lower age group (162.68 ± 79.87 vs. 228.39 ± 121.38; p-value = 0.005; 95%CI 19.97, 111.45). The factors that affected the MFI were women ≥ 38 years of age (p-value = 0.005; 95%CI -111.45, -19.91), total gonadotropin dosages (p-value = 0.006; 95%CI -0.08, 0.01), and gonadotropin-releasing hormone agonist (GnRHa) triggering (p-value = 0.006; 95%CI 36.46, 210.06). However, only women aged ≥38 years remained statistically significant after a multivariable regression analysis (p-value = 0.014; 95%CI -121.00, -14.30). In addition, only male age (mean age ± SD = 38.26 ± 5.13) was associated with high blastocyst quality in univariate and mixed multivariate analyses (OR 0.91; 95%CI 0.56, 3.04). The chemical pregnancy rate was not significantly different between the two age groups (34.5% vs. 56.7%; p-value = 0.162; 95%CI 0.2, 1.30). Conclusion: Advancing age decreased mitochondrial activity in CCs but did not affect blastocyst quality. By contrast, male age may be a predictor of high-grade blastocyst quality.
Collapse
Affiliation(s)
- Suwichaya Jitngamsujarit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.J.); (T.P.); (S.S.)
| | - Lingling Salang
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.J.); (T.P.); (S.S.)
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (S.S.); (K.T.)
| | - Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (S.S.); (K.T.)
| | - Kanyarat Thithuan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (S.S.); (K.T.)
| | - Thanida Pongsritasana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.J.); (T.P.); (S.S.)
| | - Sineenart Sukkasame
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.J.); (T.P.); (S.S.)
| |
Collapse
|
3
|
Zhou XY, Yang YZ, Zhang J, Zhang XF, Liu YD, Wang Z, Chen SL. Elevated cell-free mitochondria DNA level of patients with premature ovarian insufficiency. BMC Pregnancy Childbirth 2023; 23:462. [PMID: 37349693 DOI: 10.1186/s12884-023-05769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) patients present with a chronic inflammatory state. Cell-free mitochondria DNA (cf-mtDNA) has been explored as a reliable biomarker for estimating the inflammation-related disorders, however, the cf-mtDNA levels in POI patients have never been measured. Therefore, in the presenting study, we aimed to evaluate the levels of cf-mtDNA in plasma and follicular fluid (FF) of POI patients and to determine a potential role of cf-mtDNA in predicting the disease progress and pregnancy outcomes. METHODS We collected plasma and FF samples from POI patients, biochemical POI (bPOI) patients and control women. Quantitative real-time PCR was used to measure the ratio of mitochondrial genome to nuclear genome of cf-DNAs extracted from the plasma and FF samples. RESULTS The plasma cf-mtDNA levels, including COX3, CYB, ND1 and mtDNA79, were significantly higher in overt POI patients than those in bPOI patients or control women. The plasma cf-mtDNA levels were weakly correlated with ovarian reserve, and could not be improved by regular hormone replacement therapy. The levels of cf-mtDNA in FF, rather than those in plasma, exhibited the potential to predict the pregnancy outcomes, although they were comparable among overt POI, bPOI and control groups. CONCLUSIONS The increased plasma cf-mtDNA levels in overt POI patients indicated its role in the progress of POI and the FF cf-mtDNA content may hold the value in predicting pregnancy outcomes of POI patients.
Collapse
Affiliation(s)
- Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Yi-Zhen Yang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Zhe Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Jiang Y, He Y, Pan X, Wang P, Yuan X, Ma B. Advances in Oocyte Maturation In Vivo and In Vitro in Mammals. Int J Mol Sci 2023; 24:9059. [PMID: 37240406 PMCID: PMC10219173 DOI: 10.3390/ijms24109059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The quality and maturation of an oocyte not only play decisive roles in fertilization and embryo success, but also have long-term impacts on the later growth and development of the fetus. Female fertility declines with age, reflecting a decline in oocyte quantity. However, the meiosis of oocytes involves a complex and orderly regulatory process whose mechanisms have not yet been fully elucidated. This review therefore mainly focuses on the regulation mechanism of oocyte maturation, including folliculogenesis, oogenesis, and the interactions between granulosa cells and oocytes, plus in vitro technology and nuclear/cytoplasm maturation in oocytes. Additionally, we have reviewed advances made in the single-cell mRNA sequencing technology related to oocyte maturation in order to improve our understanding of the mechanism of oocyte maturation and to provide a theoretical basis for subsequent research into oocyte maturation.
Collapse
Affiliation(s)
- Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
5
|
Liu Y, Mei Q, Yang J, Shen Q, Zou M, Li J, Li H, Zhang L, Xiang W. hsa-miR-320a-3p and hsa-miR-483-5p levels in human granulosa cells: promising bio-markers of live birth after IVF/ICSI. Reprod Biol Endocrinol 2022; 20:160. [PMID: 36411450 PMCID: PMC9677699 DOI: 10.1186/s12958-022-01037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are considered potential biomarkers for various diseases. This study investigated whether hsa-miR-320a-3p and hsa-miR-483-5p levels in human ovarian granulosa cells derived from follicular fluids are associated with embryo developmental competence. METHODS We collected 195 granulosa cells samples and analyzed the treatment outcomes in patients undergoing in vitro fertilization (n = 147) or intracytoplasmic sperm injection (n = 48) cycles. The hsa-miR-320a-3p and hsa-miR-483-5p levels in granulosa cells were measured using quantitative reverse transcription-polymerase chain reaction. RESULTS Patients were subdivided into four groups according to the granulosa cells hsa-miR-320a-3p and hsa-miR-483-5p levels quartiles (Q1-Q4). Embryo developmental competence was compared using the chi-square test. Patients in Q3 were less likely to achieve a normal fertilization rate for in vitro fertilization and blastocyst formation than those in Q1 as they expressed high levels of hsa-miR-320a-3p and hsa-miR-483-5p (P < 0.05). Patients in Q3 and Q4 were less likely to achieve a good-quality embryo as they expressed high levels of hsa-miR-483-5p and hsa-miR-320a-3p (P < 0.05). The hsa-miR-320a-3p and hsa-miR-483-5p levels were not associated with clinical pregnancy. However, multiple regression analysis indicated that in Q3 and Q4 intervals had experienced a decreased chance of live birth due to high expression levels of hsa-miR-320a-3p and hsa-miR-483-5p levels. The relative hsa-miR-320a-3p expression levels in granulosa cells were weakly and positively correlated with the patient age (P = 0.0033). Moreover, both the basal follicle stimulating hormone (P = 0.0003) and ovarian stimulation protocols (P = 0.006 and P = 0.004) significantly and positively affected hsa-miR-320a-3p levels. The days of stimulation was negatively correlated with the relative hsa-miR-320a-3p expression level (P = 0.047). CONCLUSIONS The hsa-miR-320a-3p and hsa-miR-483-5p levels in human granulosa cells negatively correlated with the good-quality embryo rate and live birth, indicating that hsa-miR-320a-3p and hsa-miR-483-5p can be used as potential negative indicators to predict good-quality embryos and live births.
Collapse
Affiliation(s)
- Yu Liu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, P. R. China
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Qiaojuan Mei
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Jiahao Yang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Qiuzi Shen
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Min Zou
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Jiao Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huaibiao Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ling Zhang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| |
Collapse
|
6
|
Lukaszuk K, Podolak A. Does Trophectoderm Mitochondrial DNA Content Affect Embryo Developmental and Implantation Potential? Int J Mol Sci 2022; 23:5976. [PMID: 35682656 PMCID: PMC9180963 DOI: 10.3390/ijms23115976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
A retrospective case control study was undertaken at the molecular biology department of a private center for reproductive medicine in order to determine whether any correlation exists between the mitochondrial DNA (mtDNA) content of trophectoderm and embryo developmental potential. A total of 275 couples underwent IVF treatment, producing a total of 716 embryos. The trophectoderm was biopsied from each embryo at the blastocyst stage (day 5 or day 6 post-fertilization) subjected to low-pass next-generation sequencing (NGS), for the purpose of detecting aneuploidy. For each sample, the number of mtDNA reads obtained after analysis using NGS was divided by the number of reads attributable to the nuclear genome. The mtDNA copy number was found to be higher in aneuploid embryos than in those that were euploid (mean mtDNA ratio ± SD: 1.13 ± 1.37 versus 1.45 ± 1.78, p = 0.02) and in day 5 biopsies compared to day 6 biopsies (1.41 ± 1.66 vs. 1.19 ± 1.27, p = 0.001), whereas no statistically significant differences in mtDNA content were seen in relation to embryo morphology (1.58 ± 2.44 vs. 2.19 ± 2.89, p = 0.12), genetic sex (1.27 ± 1.29 vs. 1.27 ± 1.18, p = 0.99), maternal age (1.31 ± 1.41 vs. 1.33 ± 1.29, p = 0.43), or its ability to implant (1.14 ± 0.88 vs. 1.21 ± 1.16, p = 0.39). mtDNA has small potential to serve as an additional, independent biomarker for embryo selection.
Collapse
Affiliation(s)
- Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Amira Podolak
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
7
|
Podolak A, Liss J, Kiewisz J, Pukszta S, Cybulska C, Rychlowski M, Lukaszuk A, Jakiel G, Lukaszuk K. Mitochondrial DNA Copy Number in Cleavage Stage Human Embryos-Impact on Infertility Outcome. Curr Issues Mol Biol 2022; 44:273-287. [PMID: 35723399 PMCID: PMC8928962 DOI: 10.3390/cimb44010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
A retrospective case control study was undertaken at the molecular biology department of a private center for reproductive medicine in order to determine whether any correlation exists between mitochondrial DNA (mtDNA) content of cleavage-stage preimplantation embryos and their developmental potential. A total of 69 couples underwent IVF treatment (averaged women age: 36.5, SD 4.9) and produced a total of 314 embryos. A single blastomere was biopsied from each embryo at the cleavage stage (day-3 post-fertilization) subjected to low-pass next generation sequencing (NGS), for the purpose of detecting aneuploidy. For each sample, the number of mtDNA reads obtained after analysis using NGS was divided by the number of reads attributable to the nuclear genome. The mtDNA copy number amount was found to be higher in aneuploid embryos than in those that were euploid (mean mtDNA ratio ± SD: 6.3 ± 7.5 versus 7.1 ± 5.8, p < 0.004; U Mann−Whitney test), whereas no statistically significant differences in mtDNA content were seen in relation to embryo morphology (6.6 ± 4.8 vs. 8.5 ± 13.6, p 0.09), sex (6.6 ± 4.1 vs. 6.2 ± 6.8, p 0.16), maternal age (6.9 ± 7.8 vs. 6.7 ± 4.5, p 0.14) or its ability to implant (7.4 ± 6.6 vs. 5.1 ± 4.6, p 0.18). The mtDNA content cannot serve as a useful biomarker at this point in development. However, further studies investigating both quantitative and qualitative aspects of mtDNA are still required to fully evaluate the relationship between mitochondrial DNA and human reproduction.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland
| | - Joanna Liss
- Invicta Research and Development Center, 81-740 Sopot, Poland
- Department of Medical Biology and Genetics, University of Gdansk, 80-308 Gdansk, Poland
| | - Jolanta Kiewisz
- Department of Human Histology and Embryology, Medical Faculty, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | | | - Celina Cybulska
- Invicta Research and Development Center, 81-740 Sopot, Poland
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Aron Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
- The Center of Postgraduate Medical Education, 1st Department of Obstetrics and Gynecology, University of Gdansk, 01-004 Warsaw, Poland
| | - Grzegorz Jakiel
- Invicta Research and Development Center, 81-740 Sopot, Poland
- The Center of Postgraduate Medical Education, 1st Department of Obstetrics and Gynecology, University of Gdansk, 01-004 Warsaw, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210 Gdansk, Poland
- iYoni App by LifeBite, 10-763 Olsztyn, Poland
| |
Collapse
|
8
|
Chen J, Liu W, Lee KF, Liu K, Wong BPC, Shu-Biu Yeung W. Overexpression of Lin28a induces a primary ovarian insufficiency phenotype via facilitation of primordial follicle activation in mice. Mol Cell Endocrinol 2022; 539:111460. [PMID: 34543700 DOI: 10.1016/j.mce.2021.111460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/28/2023]
Abstract
Lin28a is an RNA binding protein and increasing evidence has indicated its role in regulating female fertility. Lin28a has been reported to be involved in ovarian follicle activation. However, its role and mechanisms in regulating primordial follicle activation have not yet been explored. To test whether overexpression of Lin28a activates ovarian primordial follicles, studies were conducted in wild type (WT) and Lin28a Tg mice. Female Lin28a Tg mice at 4-month old exhibited significantly smaller litter size and fewer ovulated oocytes when compared with the WT mice. By 6-month of age, these parameters in Lin28a Tg mice were less than 20% of the WT mice. At postnatal day (PD) 14, the number of primordial follicles was significantly decreased but the number of primary follicles was significantly increased in the transgenic mice. The number of primordial follicles, secondary and antral follicles in these mice were drastically reduced at PD21. In the ovary of Lin28a Tg mice, there were activation of Wnt/β-catenin signaling and its downstream mTOR pathway. Interestingly, overexpression of Lin28a, which can also act as transcriptional activator, activated Wnt signaling through enhancing the transcription of Wnt co-receptor LRP5. In conclusion, overexpression of Lin28a induced a primary ovarian insufficiency phenotype in long term via facilitating Wnt/β-catenin signaling leading to activation of primordial follicles.
Collapse
Affiliation(s)
- Jing Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China.
| | - Weimin Liu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China.
| | - Kui Liu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| | - Benancy P C Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China.
| | - William Shu-Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|