1
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Duan W, Wu Y, Zhang Y, Liu X. Identification of competing endogenous RNA networks associated with circRNA and lncRNA in TCDD-induced cleft palate development. Toxicol Lett 2024; 401:71-81. [PMID: 39270811 DOI: 10.1016/j.toxlet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD) is a teratogen that can induce cleft palate formation, a common birth defect. Competing endogenous RNAs (ceRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), indirectly regulate gene expression via sharing microRNAs (miRNAs). Nevertheless, the mechanism by which they act as ceRNAs to regulate palatal development remains to be explored in greater detail. Here, the cleft palate model of C57BL/6 N pregnant mice was constructed by gavage of TCDD (64 ug/kg) on gestation day (GD) 10.5, and the palatal shelves were taken on gestation day (GD) 14.5 for whole-transcriptome sequencing to investigate the underlying mechanisms of the roles of circRNAs and lncRNAs as ceRNAs in cleft palate. Sequencing results revealed that 293 lncRNA, 589 circRNA, 47 miRNA, and 138 messenger RNA (mRNA) were significantly dysregulated, and the cytochrome P450 (CYP) enzymes and the aryl hydrocarbon receptor (AhR) pathway play key roles in the induction of cleft palate upon exposure to TCDD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the function of TCDD function was mainly related to the metabolic processes of intracellular compounds, including the metabolic processes of cellular aromatic compounds and the metabolism of exogenous drugs by cytochrome P450, etc. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks were hypothesized to be a hub involved in palatal development suggesting that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks may be critical for palatogenesis, setting the foundation for the investigation of cleft palate.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hexin Su
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Knauer JF, Schulz C, Zemella A, Wüstenhagen DA, Walter RM, Küpper JH, Kubick S. Synthesis of mono Cytochrome P450 in a modified CHO-CPR cell-free protein production platform. Sci Rep 2024; 14:1271. [PMID: 38218994 PMCID: PMC10787779 DOI: 10.1038/s41598-024-51781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Cytochromes P450 (CYPs) are a group of monooxygenases that can be found in almost all kinds of organisms. For CYPs to receive electrons from co-substrate NADPH, the activity of NADPH-Cytochrome-P450-oxidoreductase (CPR) is required as well. In humans, CYPs are an integral part of liver-based phase-1 biotransformation, which is essential for the metabolization of multiple xenobiotics and drugs. Consequently, CYPs are important players during drug development and therefore these enzymes are implemented in diverse screening applications. For these applications it is usually advantageous to use mono CYP microsomes containing only the CYP of interest. The generation of mono-CYP containing mammalian cells and vesicles is difficult since endogenous CYPs are present in many cell types that contain the necessary co-factors. By obtaining translationally active lysates from a modified CHO-CPR cell line, it is now possible to generate mono CYPs in a cell-free protein synthesis process in a straightforward manner. As a proof of principle, the synthesis of active human CYPs from three different CYP450 gene families (CYP1A2, CYP2B6 and CYP3A4), which are of outstanding interest in industry and academia was demonstrated. Luciferase based activity assays confirm the activity of the produced CYPs and enable the individual adaptation of the synthesis process for efficient cell-free enzyme production. Furthermore, they allow for substrate and inhibitor screenings not only for wild-type CYPs but also for mutants and further CYP isoforms and variants. As an example, the turnover of selected CYP substrates by cell-free synthesized CYPs was demonstrated via an indirect luciferase assay-based screening setup.
Collapse
Affiliation(s)
- Jan Felix Knauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Christian Schulz
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Ruben Magnus Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus -Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Hall A, Mattison D, Singh N, Chatzistamou I, Zhang J, Nagarkatti M, Nagarkatti P. Effect of TCDD exposure in adult female and male mice on the expression of miRNA in the ovaries and testes and associated reproductive functions. FRONTIERS IN TOXICOLOGY 2023; 5:1268293. [PMID: 37854252 PMCID: PMC10579805 DOI: 10.3389/ftox.2023.1268293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant found widely across the world. While animal and human studies have shown that exposure to TCDD may cause significant alterations in the reproductive tract, the effect of TCDD on the expression of miRNA in the reproductive organs has not been previously tested. In the current study, we exposed adult female or male mice to TCDD or vehicle and bred them to study the impact on reproduction. The data showed that while TCDD treatment of females caused no significant change in litter size, it did alter the survival of the pups. Also, TCDD exposure of either the male or female mice led to an increase in the gestational period. While TCDD did not alter the gross morphology of the ovaries and testes, it induced significant alterations in the miRNA expression. The ovaries showed the differential expression of 426 miRNAs, of which 315 miRNAs were upregulated and 111 miRNA that were downregulated after TCDD exposure when compared to the vehicle controls. In the testes, TCDD caused the differential expression of 433 miRNAs, with 247 miRNAs upregulated and 186 miRNAs downregulated. Pathway analysis showed that several of these dysregulated miRNAs targeted reproductive functions. The current study suggests that the reproductive toxicity of TCDD may result from alterations in the miRNA expression in the reproductive organs. Because miRNAs also represent one of the epigenetic pathways of gene expression, our studies suggest that the transgenerational toxicity of TCDD may also result from dysregulation in the miRNAs.
Collapse
Affiliation(s)
- Alina Hall
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald Mattison
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jiajia Zhang
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
4
|
Chen S, Guo W, Liu H, Zheng J, Lu D, Sun J, Li C, Liu C, Wang Y, Huang Y, Liu W, Li Y, Liu T. Mechanistic study of cytochrome P450 enzyme-mediated cytotoxicity of psoralen and isopsoralen. Food Chem Toxicol 2023; 180:114011. [PMID: 37660943 DOI: 10.1016/j.fct.2023.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Psoralen and isopsoralen are the major components responsible for Psoraleae Fructus-induced hepatotoxicity. This study explored the role of metabolic activation by cytochrome P450 (CYP) enzymes in psoralen- and isopsoralen-induced cytotoxicity and its potential mechanisms. Inhibitors of CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4 were used to screen specific CYP enzymes responsible for the metabolic activation of psoralen and isopsoralen in mouse primary hepatocytes, which was verified using the corresponding transfected cell lines. Network toxicology and transcriptome analyses were performed to explore the mechanisms underlying toxicity. Psoralen and isopsoralen decreased the viability of mouse primary hepatocytes, whereas the inhibition of CYP2C9, 2C19, 2D6, and 2E1 significantly increased their viability. Psoralen-induced cytotoxicity was significantly enhanced by the overexpression of CYP2C19 in Chinese hamster ovary cells, whereas the overexpression of the above CYP enzymes did not affect the cytotoxicity of isopsoralen. Psoralen- and isopsoralen-induced cytotoxic effects were associated with putative core targets (i.e., Fn1, Thbs1, and Tlr2) and multiple signaling pathways (e.g., PI3K-Akt, MAPK, and TNF pathways). Our results demonstrate that the metabolic activation of psoralen and isopsoralen is mediated by CYP enzymes, thereby regulating multiple core targets and signaling pathways and resulting in cytotoxicity.
Collapse
Affiliation(s)
- Shuaishuai Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China; Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Weiyu Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Huan Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Dingyan Lu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Chun Li
- School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wen Liu
- School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Schulz C, Herzog N, Kubick S, Jung F, Küpper JH. Stable Chinese Hamster Ovary Suspension Cell Lines Harboring Recombinant Human Cytochrome P450 Oxidoreductase and Human Cytochrome P450 Monooxygenases as Platform for In Vitro Biotransformation Studies. Cells 2023; 12:2140. [PMID: 37681872 PMCID: PMC10486802 DOI: 10.3390/cells12172140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
In the liver, phase-1 biotransformation of drugs and other xenobiotics is largely facilitated by enzyme complexes consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs). Generated from human liver-derived cell lines, recombinant in vitro cell systems with overexpression of defined phase-1 enzymes are widely used for pharmacological and toxicological drug assessment and laboratory-scale production of drug-specific reference metabolites. Most, if not all, of these cell lines, however, display some background activity of several CYPs, making it difficult to attribute effects to defined CYPs. The aim of this study was to generate cell lines with stable overexpression of human phase-1 enzymes based on Chinese hamster ovary (CHO) suspension cells. Cells were sequentially modified with cDNAs for human CPR in combination with CYP1A2, CYP2B6, or CYP3A4, using lentiviral gene transfer. In parallel, CYP-overexpressing cell lines without recombinant CPR were generated. Successful recombinant expression was demonstrated by mRNA and protein analyses. Using prototypical CYP-substrates, generated cell lines proved to display specific enzyme activities of each overexpressed CYP while we did not find any endogenous activity of those CYPs in parental CHO cells. Interestingly, cell lines revealed some evidence that the dependence of CYP activity on CPR could vary between CYPs. This needs to be confirmed in further studies. Recombinant expression of CPR was also shown to enhance CYP3A4-independent metabolisation of testosterone to androstenedione in CHO cells. We propose the novel serum-free CHO suspension cell lines with enhanced CPR and/or defined CYP activity as a promising "humanised" in vitro model to study the specific effects of those human CYPs. This could be relevant for toxicology and/or pharmacology studies in the pharmaceutical industry or medicine.
Collapse
Affiliation(s)
- Christian Schulz
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany;
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany;
| | - Natalie Herzog
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany;
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| | - Jan-Heiner Küpper
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany;
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| |
Collapse
|