1
|
Graton ME, Spaans F, He R, Chatterjee P, Kirschenman R, Quon A, Phillips TJ, Case CP, Davidge ST. Sex-specific differences in the mechanisms for enhanced thromboxane A 2-mediated vasoconstriction in adult offspring exposed to prenatal hypoxia. Biol Sex Differ 2024; 15:52. [PMID: 38898532 PMCID: PMC11188502 DOI: 10.1186/s13293-024-00627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A2 (TxA2) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown. To prevent the risk of cardiovascular disease by prenatal hypoxia, we have tested a maternal treatment using a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). We hypothesized that prenatal hypoxia enhances vascular TxA2 responses in the adult offspring, due to decreased NO modulation, and that this might be prevented by maternal nMitoQ treatment. METHODS Pregnant Sprague-Dawley rats received a single intravenous injection (100 µL) of vehicle (saline) or nMitoQ (125 µmol/L) on gestational day (GD)15 and were exposed to normoxia (21% O2) or hypoxia (11% O2) from GD15 to GD21 (term = 22 days). Coronary and mesenteric arteries were isolated from the 4-month-old female and male offspring, and vasoconstriction responses to U46619 (TxA2 analog) were evaluated using wire myography. In mesenteric arteries, L-NAME (pan-NO synthase (NOS) inhibitor) was used to assess NO modulation. Mesenteric artery endothelial (e)NOS, and TxA2 receptor expression, superoxide, and 3-nitrotyrosine levels were assessed by immunofluorescence. RESULTS Prenatal hypoxia resulted in increased U46619 responsiveness in coronary and mesenteric arteries of the female offspring, and to a lesser extent in the male offspring, which was prevented by nMitoQ. In females, there was a reduced impact of L-NAME in mesenteric arteries of the prenatal hypoxia saline-treated females, and reduced 3-nitrotyrosine levels. In males, L-NAME increased U46619 responses in mesenteric artery to a similar extent, but TxA2 receptor expression was increased by prenatal hypoxia. There were no changes in eNOS or superoxide levels. CONCLUSIONS Prenatal hypoxia increased TxA2 vasoconstrictor capacity in the adult offspring in a sex-specific manner, via reduced NO modulation in females and increased TP expression in males. Maternal placental antioxidant treatment prevented the impact of prenatal hypoxia. These findings increase our understanding of how complicated pregnancies can lead to a sex difference in the programming of cardiovascular disease in the adult offspring.
Collapse
Affiliation(s)
- Murilo E Graton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Rose He
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Paulami Chatterjee
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Tom J Phillips
- UK Dementia Research Institute, Cardiff University, Cardiff, W1T 7NF, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS8 1QU, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
2
|
Guo J, Yu X, Liu Y, Lu L, Zhu D, Zhang Y, Li L, Zhang P, Gao Q, Lu X, Sun M. Prenatal hypothyroidism diminished exogenous NO-mediated diastolic effects in fetal rat thoracic aorta smooth muscle via increased oxidative stress. Reprod Toxicol 2022; 113:52-61. [PMID: 35970333 DOI: 10.1016/j.reprotox.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Maternal hypothyroidism is an important problem of modern healthcare and is reported to increase the risk of cardiovascular diseases in the offspring later in life. However, it is unclear whether hypothyroidism during pregnancy causes vascular damage in the fetal period. We established the prenatal hypothyroidism rat model and collected the fetuses at the 21th day of gestation (GD21). Thyroid hormone concentrations in maternal and offspring blood serum were assessed by enzyme-linked immunosorbent assay (ELISA). The thoracic aortas of the fetuses were isolated for microvessel functional testing and histochemical stainings. qPCR and Western blot were performed to access mRNA and protein expression. We found that the concentrations of thyroid hormones in the serum of pregnant rats and fetuses were significantly suppressed at GD21. The responses of the fetal thoracic aortas to SNP were significantly attenuated in the PTU group. However, no statistical difference was found between the two groups when treated with either inhibitor (ODQ) or activator (BAY58-2667) of sGC. The production of O2-• in the arterial wall was significantly increased in hypothyroid fetuses. Moreover, the level of NADPH oxidase (NOX) was increased, while superoxide dismutase 2 (SOD2) was down-regulated in the PTU group, ultimately contributing to the increased production of superoxide. Additionally, decreased SNP-mediated vasodilation found in fetal vessels was improved by either NOX inhibitor (Apocynin) or SOD mimic (Tempol). These results indicate that increased oxidative stress is probably the cause of the diminished diastolic effect of exogenous NO in the thoracic artery of prenatal hypothyroidism exposed fetuses.
Collapse
Affiliation(s)
- Jun Guo
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yanping Liu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Likui Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Dan Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Pengjie Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xiyuan Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| |
Collapse
|
3
|
Zhang Y, Pu J, Ding Y, Wu L, Yin Y, Sun M, Gu Y, Zhang D, Zhang Z, Zheng Q, He Q, Xu T, He Y, Su H, Zhou X, Li L, Ye Y, Li J, Xu Z. Sex Differences at Early Old Stage in Glycolipid Metabolism and Fatty Liver in Offspring Prenatally Exposed to Chinese Great Famine. Front Nutr 2022; 9:913966. [PMID: 35811949 PMCID: PMC9257182 DOI: 10.3389/fnut.2022.913966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAbout 50 years ago, Chinese Great Famine (CGF) affected the entire population in China, and its long-term influence on the offspring has attracted significant attention for research. However, information on possible metabolic differences between sexes is limited. This study explored whether there might be sex differences in the risks of development of glucolipid metabolic dysfunction and fatty liver following prenatal exposure to CGF.Materials and MethodsThere were 11,417 subjects around 55 years of age (6,661 women and 4,756 men). They were divided as the exposed group in which the fetal stage was in CGF, and the unexposed group included those born after CGF. Analysis focused on comparisons between sexes.ResultsCompared to the unexposed group, the BMI and triglyceride (P < 0.05) in men were higher in exposed group, while waist circumference and blood sugar (P < 0.05) in the exposed women were significantly higher. With the ages being properly balanced, the risks of glycolipid metabolic dysfunction were significantly higher in both men and women in the exposed than in the unexposed group (P < 0.001). Prenatal exposure to CGF significantly increased risks of abnormal BMI (P < 0.001, 95% CI: 2.305–2.93), blood sugar (P < 0.05, 95% CI: 1.050–1.401), triglycerides (P < 0.05, 95% CI: 1.006–1.245), and fatty liver (P < 0.001, 95% CI: 1.121–1.390) in men, and increased risks of abnormal blood sugar (P < 0.05, 95% CI: 1.024–1.689) and positive urine sugar (P < 0.05, 95% CI: 1.062–6.211) in women. Height and body weight were either the same or higher in the exposed subjects compared with the unexposed ones, regardless of sexes.ConclusionThis study is the first to identify sex differences in the long-term effects of CGF on metabolism and fatty liver. Importance of the findings include the benefits of prescribing medicine for the early prevention of certain diseases for each sex before aging based on the differences revealed. This study also shows “catch-up growth” in the offspring prenatally exposed to CGF as possible mechanisms underlying the long-term effects.
Collapse
Affiliation(s)
- Yumeng Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhong Pu
- The Center of Management, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Ding
- Department of Preventive Medicine, College of Clinical Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Lei Wu
- Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Yongxiang Yin
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Mingya Sun
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ying Gu
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Daiyi Zhang
- The Center of Management, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ze Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiutong Zheng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qinyuan He
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun He
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongyu Su
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Ye
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Jingyang Li
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- *Correspondence: Zhice Xu,
| |
Collapse
|