1
|
Liu Y, Chen C, Rong C, He X, Chen L. Anaplastic Lymphoma Kinase Tyrosine Kinase Inhibitor-Associated Cardiotoxicity: A Recent Five-Year Pharmacovigilance Study. Front Pharmacol 2022; 13:858279. [PMID: 35370632 PMCID: PMC8968911 DOI: 10.3389/fphar.2022.858279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Clinical trials frequently reported anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) associated with cardiac adverse drug events (AEs) but minimal postmarketing data. We aimed to research real-world cardiac disorders associated with ALK-TKIs based on the Food and Drug Administration Adverse Event Reporting System (FAERS). Methods: Extract reports from the FAERS from the first quarter of 2016 to the second quarter of 2021 were obtained. Data mining of cardiac disorders associated with ALK-TKIs was carried out using disproportionality analysis to determine the clinical characteristics of AEs. Results: In total, 605 cases were screened out. These events were found to be more prevalent in patients ≥45 years (50.74%) and women (50.74%). The onset time of cardiac disorders was variable and concentrated within 2 months, with a median time of 33 days. The outcomes tended to be poor, with 20.93% fatality proportion. Cardiac arrhythmia was a common adverse event of ALK-TKIs, especially bradycardia. Crizotinib and lorlatinib showed positive signals in cardiac disorders, especially in heart failure, and brigatinib presented no signals. The study also found that myocarditis caused by ceritinib and cardiomyopathy caused by lorlatinib may be potential new adverse drug reactions. Conclusion: ALK-TKIs were reported more frequently in cardiotoxicity than other drugs and could often manifest earlier. We also found potential new AE signals in specific drugs and need more clinical studies to confirm. Our study helps fill the safety information of ALK-TKIs in the heart and provides directions for further research.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Pharmacy, West China Second Hospital, Sichuan University, Chengdu, China.,Evidence-Based Pharmacy Center, West China Second Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Chen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Chencheng Rong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xucheng He
- Department of Pharmacy, Pengzhou Second People's Hospital, Chengdu, China
| | - Li Chen
- Department of Pharmacy, West China Second Hospital, Sichuan University, Chengdu, China.,Evidence-Based Pharmacy Center, West China Second Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Mamdani H, Jalal SI. Spotlight on the treatment of ALK-rearranged non-small-cell lung cancer. Lung Cancer Manag 2019; 6:125-128. [PMID: 30643578 PMCID: PMC6310304 DOI: 10.2217/lmt-2018-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hirva Mamdani
- Department of Hematology & Oncology, Karmanos Cancer Institute/Wayne State University, Detroit, MI, USA.,Department of Hematology & Oncology, Karmanos Cancer Institute/Wayne State University, Detroit, MI, USA
| | - Shadia I Jalal
- Department of Medicine, Indiana University, Melvin & Bren Simon Cancer Center, Division of Hematology/Oncology, Indianapolis, IN, USA.,Department of Medicine, Indiana University, Melvin & Bren Simon Cancer Center, Division of Hematology/Oncology, Indianapolis, IN, USA
| |
Collapse
|
3
|
Spagnuolo A, Maione P, Gridelli C. Evolution in the treatment landscape of non-small cell lung cancer with ALK gene alterations: from the first- to third-generation of ALK inhibitors. Expert Opin Emerg Drugs 2018; 23:231-241. [DOI: 10.1080/14728214.2018.1527902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessia Spagnuolo
- Division of Medical Oncology, ‘S. G. Moscati’ Hospital, Avellino, Italy
| | - Paolo Maione
- Division of Medical Oncology, ‘S. G. Moscati’ Hospital, Avellino, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, ‘S. G. Moscati’ Hospital, Avellino, Italy
| |
Collapse
|
4
|
Abstract
Advancement in the understanding of lung tumor biology enables continued refinement of lung cancer classification, reflected in the recently introduced 2015 World Health Organization classification of lung cancer. In small biopsy or cytology specimens, special emphasis is placed on separating adenocarcinomas from the other lung cancers to effectively select tumors for targeted molecular testing. In resection specimens, adenocarcinomas are further classified based on architectural pattern to delineate tissue types of prognostic significance. Neuroendocrine tumors are divided into typical carcinoid, atypical carcinoid, small cell carcinoma, and large cell neuroendocrine carcinoma based on a combination of features, especially tumor cell proliferation rate.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pathology, Jersey Shore University Medical Center, 1945 Route 33, Neptune, NJ 07753, USA.
| |
Collapse
|
5
|
Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T, Ciardiello F, Morgillo F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer 2018; 17:30. [PMID: 29455642 PMCID: PMC5817803 DOI: 10.1186/s12943-018-0776-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) gene activation is involved in the carcinogenesis process of several human cancers such as anaplastic large cell lymphoma, lung cancer, inflammatory myofibroblastic tumors and neuroblastoma, as a consequence of fusion with other oncogenes (NPM, EML4, TIM, etc) or gene amplification, mutation or protein overexpression. ALK is a transmembrane tyrosine kinase receptor that, upon ligand binding to its extracellular domain, undergoes dimerization and subsequent autophosphorylation of the intracellular kinase domain. When activated in cancer it represents a target for specific inhibitors, such as crizotinib, ceritinib, alectinib etc. which use has demonstrated significant effectiveness in ALK-positive patients, in particular ALK-positive non- small cell lung cancer. Several mechanisms of resistance to these inhibitors have been described and new strategies are underway to overcome the limitations of current ALK inhibitors.
Collapse
Affiliation(s)
- Carminia Maria Della Corte
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Giuseppe Viscardi
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Raimondo Di Liello
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Morena Fasano
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Erika Martinelli
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
6
|
Abstract
The molecular characterization of lung cancer has changed the classification and treatment of these tumors, becoming an essential component of pathologic diagnosis and oncologic therapy decisions. Through the recognition of novel biomarkers, such as epidermal growth factor receptor mutations and anaplastic lymphoma kinase translocations, it is possible to identify subsets of patients who benefit from targeted molecular therapies. The success of targeted anticancer therapies and new immunotherapy approaches has created a new paradigm of personalized therapy and has led to accelerated development of new drugs for lung cancer treatment. This article focuses on clinically relevant cancer biomarkers as targets for therapy and potential new targets for drug development.
Collapse
Affiliation(s)
- Pamela Villalobos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 Holcombe Boulevard, Unit 2951, Houston, TX 77030, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 Holcombe Boulevard, Unit 2951, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Srinivasamaharaj S, Salame BK, Rios-Perez J, Kloecker G, Perez CA. The role of alectinib in the treatment of advanced ALK-rearranged non-small-cell lung cancer. Expert Rev Anticancer Ther 2016; 16:1227-1233. [DOI: 10.1080/14737140.2016.1249857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Srividya Srinivasamaharaj
- Division of Medical Oncology and Hematology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Bilal Khameze Salame
- Division of Medical Oncology and Hematology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jorge Rios-Perez
- Division of Medical Oncology and Hematology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Goetz Kloecker
- Division of Medical Oncology and Hematology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Cesar A. Perez
- Division of Medical Oncology and Hematology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
8
|
Zhao Z, Verma V, Zhang M. Anaplastic lymphoma kinase: Role in cancer and therapy perspective. Cancer Biol Ther 2016; 16:1691-701. [PMID: 26529396 DOI: 10.1080/15384047.2015.1095407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is correlated with oncogenesis in different types of cancers, such as anaplastic large cell lymphoma, lung cancer, neuroblastoma, and even breast cancer, by abnormal fusion of ALK or non-fusion ALK activation. ALK is a receptor tyrosine kinase, with a single transmembrane domain, that plays an important role in development. Upon ligand binding to the extracellular domain, the receptor undergoes dimerization and subsequent autophosphorylation of the intracellular kinase domain. In recent years, ALK inhibitors have been developed for cancer treatment. These inhibitors target ALK activity and show effectiveness in ALK-positive non-small cell lung cancer. However, acquired treatment resistance makes the future of this therapy unclear; new strategies are underway to overcome the limitations of current ALK inhibitors.
Collapse
Affiliation(s)
- Zhihong Zhao
- a Munroe-Meyer Institute; University of Nebraska Medical Center ; Omaha , NE , USA
| | - Vivek Verma
- b Department of Radiation Oncology ; University of Nebraska Medical Center ; Omaha , NE , USA
| | - Mutian Zhang
- b Department of Radiation Oncology ; University of Nebraska Medical Center ; Omaha , NE , USA
| |
Collapse
|
9
|
Chan ELY, Chin CHY, Lui VWY. An update of ALK inhibitors in human clinical trials. Future Oncol 2016; 12:71-81. [DOI: 10.2217/fon.15.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The proto-oncogenic ALK is a druggable receptor tyrosine kinase for cancer treatment. Two small molecule inhibitors of ALK, crizotinib and ceritinib, have been recently approved for the treatment of metastatic non-small-cell lung cancer, with marked improvement of progression-free survival of patients. Independent case reports also indicate their potential therapeutic activity in other ALK-rearranged cancers. Numerous single-agent and combination therapy trials are ongoing in lung and many other cancers. Results of these trials are greatly anticipated. Here, we summarize our current understanding of ALK signaling, genomic aberrations in cancer and emerging mechanisms of drug resistance. We will also provide a timely review on all ALK inhibitors and their current status of development in clinical settings.
Collapse
Affiliation(s)
- Eason Leong Yin Chan
- Pharmacogenomics & Precision Therapeutics Laboratory, Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Claudia Ho Yi Chin
- Pharmacogenomics & Precision Therapeutics Laboratory, Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Vivian Wai Yan Lui
- Pharmacogenomics & Precision Therapeutics Laboratory, Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
10
|
Kumar M, Ernani V, Owonikoko TK. Biomarkers and targeted systemic therapies in advanced non-small cell lung cancer. Mol Aspects Med 2015; 45:55-66. [PMID: 26187108 DOI: 10.1016/j.mam.2015.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/24/2015] [Indexed: 01/15/2023]
Abstract
The last decade has witnessed significant growth in therapeutic options for patients diagnosed with lung cancer. This is due in major part to our improved technological ability to interrogate the genomics of cancer cells, which has enabled the development of biologically rational anticancer agents. The recognition that lung cancer is not a single disease entity dates back many decades to the histological subclassification of malignant neoplasms of the lung into subcategories of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). While SCLC continues to be regarded as a single histologic and therapeutic category, the NSCLC subset has undergone additional subcategorizations with distinct management algorithms for specific histologic and molecular subtypes. The defining characteristics of these NSCLC subtypes have evolved into important tools for prognosis and for predicting the likelihood of benefit when patients are treated with anticancer agents.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Vinicius Ernani
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Taofeek K Owonikoko
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|