1
|
Gunasekaran H, Ranganathan UD, Bethunaickan R. The importance of inflammatory biomarkers in detecting and managing latent tuberculosis infection. Front Immunol 2025; 16:1538127. [PMID: 39981231 PMCID: PMC11839662 DOI: 10.3389/fimmu.2025.1538127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) triggers an autoimmune-like response in the host leading to further complications. One of the major concerns in eliminating Tuberculosis (TB) is identifying individuals with Latent Tuberculosis Infection (LTBI) who serve as major reservoirs of Mtb making them the important target group for TB eradication. Since no gold standard tests are available for detecting LTBI, the global burden of LTBI cannot be precisely determined. Since LTBI poses several challenges to worldwide healthcare, managing LTBI must be the key priority to achieve a TB-free status. The inflammatory mediators play a major role in determining the outcome of the Mtb infection and also their levels seem to change according to the disease severity. Identification of inflammatory mediators and utilizing them as diagnostic biomarkers for detecting the various stages of TB disease might help identify the reservoirs of Mtb infection even before they become symptomatic so that preventative treatment can be started early. In summary, this review primarily focuses on exploring different inflammatory markers along the course of the Mtb infection. Identifying LTBI-specific biomarkers helps to identify individuals who are at higher risk of developing TB and preparing them to adhere to preventive therapy thus minimizing the global burden of TB.
Collapse
Affiliation(s)
- Harinisri Gunasekaran
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramalingam Bethunaickan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Mahmoudi S, Hosseini Sharif SMS. Diagnostic accuracy of QuantiFERON-TB gold plus with chemiluminescence immunoassay: a systematic review and meta-analysis. Expert Rev Clin Immunol 2025; 21:93-102. [PMID: 39297566 DOI: 10.1080/1744666x.2024.2407550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/22/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Tuberculosis (TB) remains a global health challenge, underscoring the need for accurate diagnosis, particularly for Latent TB Infection. This meta-analysis assesses the diagnostic performance of QuantiFERON-TB Gold Plus (QFT) using Enzyme-Linked Immunosorbent Assay (ELISA) with Chemiluminescence Immunoassay (CLIA). AREAS COVERED We systematically reviewed studies comparing QFT-CLIA with QFT-ELISA for TB detection. The literature search was carried out on PubMed, Scopus, and Web of Science, covering publications up to 15 September 2023. We included studies that assessed sensitivity, specificity, positive and negative likelihood ratios (PLR and NLR), Diagnostic Odds Ratio (DOR), and concordance. EXPERT OPINION QFT-CLIA demonstrated high sensitivity of 0.97 (95% CI: 0.95-0.99) and specificity of 0.99 (95% CI: 0.92-1.0), with PLR of 72.19 (95% CI: 11.25-463.17), NLR of 0.03 (95% CI: 0.02-0.05), and DOR of 2494.55 (95% CI: 301.67 -20,627.87). The overall agreement between QFT-CLIA and QFT-ELISA was strong (0.92, 95% CI: 0.88-0.97), although the agreement for indeterminate results was slightly lower (0.83, 95% CI: 0.70-0.96). The high diagnostic accuracy and broader quantitative range of QFT-CLIA compared to ELISA may lead to more positive results and better classification of borderline cases. However, further research is needed to validate its diagnostic capabilities.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Seyed Mohammad Sajad Hosseini Sharif
- InPedia Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li Z, Hu Y, Wang W, Zou F, Yang J, Gao W, Feng S, Chen G, Shi C, Cai Y, Deng G, Chen X. Integrating pathogen- and host-derived blood biomarkers for enhanced tuberculosis diagnosis: a comprehensive review. Front Immunol 2024; 15:1438989. [PMID: 39185416 PMCID: PMC11341448 DOI: 10.3389/fimmu.2024.1438989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
This review explores the evolving landscape of blood biomarkers in the diagnosis of tuberculosis (TB), focusing on biomarkers derived both from the pathogen and the host. These biomarkers provide critical insights that can improve diagnostic accuracy and timeliness, essential for effective TB management. The document highlights recent advancements in molecular techniques that have enhanced the detection and characterization of specific biomarkers. It also discusses the integration of these biomarkers into clinical practice, emphasizing their potential to revolutionize TB diagnostics by enabling more precise detection and monitoring of the disease progression. Challenges such as variability in biomarker expression and the need for standardized validation processes are addressed to ensure reliability across different populations and settings. The review calls for further research to refine these biomarkers and fully harness their potential in the fight against TB, suggesting a multidisciplinary approach to overcome existing barriers and optimize diagnostic strategies. This comprehensive analysis underscores the significance of blood biomarkers as invaluable tools in the global effort to control and eliminate TB.
Collapse
Affiliation(s)
- Zhaodong Li
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yunlong Hu
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wenfei Wang
- National Clinical Research Center for Infectious Disease, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Fa Zou
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jing Yang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei Gao
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - SiWan Feng
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guanghuan Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Chenyan Shi
- Department of Preventive Medicine, School of Public Health, Shenzhen University, Shenzhen, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guofang Deng
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
4
|
Mahmoudi S, Nourazar S. Evaluating the diagnostic accuracy of QIAreach QuantiFERON-TB compared to QuantiFERON-TB Gold Plus for tuberculosis: a systematic review and meta-analysis. Sci Rep 2024; 14:14455. [PMID: 38914731 PMCID: PMC11196697 DOI: 10.1038/s41598-024-65663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024] Open
Abstract
Accurate tuberculosis (TB) diagnosis remains challenging, especially in resource-limited settings. This study aims to assess the diagnostic performance of the QIAreach QuantiFERON-TB (QFT) assay, with a specific focus on comparing its diagnostic performance with the QuantiFERON-TB Gold Plus (QFT-Plus). We systematically reviewed relevant individual studies on PubMed, Scopus, and Web of Science up to January 20, 2024. The focus was on evaluating the diagnostic parameters of the QIAreach QFT assay for TB infection, which included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and concordance with the QFT-Plus assay. QIAreach QFT demonstrated strong diagnostic performance with a pooled sensitivity of 99% (95% CI 95-100%) and specificity of 94% (95% CI 85-97%). Additionally, it showed a PLR of 15.6 (95% CI 6.5-37.5) and NLR of 0.01 (95% CI 0-0.03). The pooled PPV and NPV were 88% (95% CI 70-98%) and 100% (95% CI 99-100%), respectively. Concordance analysis with QFT-Plus revealed a pooled positive percent agreement of 98% (95% CI 88-100%) and pooled negative percent agreement of 91% (95% CI 81-97%), with a pooled overall percent agreement of 92% (95% CI 83-98). In conclusion, QIAreach QFT has shown promising diagnostic performance, with a strong concordance with QFT-Plus. However, further studies are needed to comprehensively evaluate its diagnostic performance in the context of TB infection.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sadra Nourazar
- InPedia Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zaporojan N, Negrean RA, Hodișan R, Zaporojan C, Csep A, Zaha DC. Evolution of Laboratory Diagnosis of Tuberculosis. Clin Pract 2024; 14:388-416. [PMID: 38525709 PMCID: PMC10961697 DOI: 10.3390/clinpract14020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease of global public health importance caused by the Mycobacterium tuberculosis complex. Despite advances in diagnosis and treatment, this disease has worsened with the emergence of multidrug-resistant strains of tuberculosis. We aim to present and review the history, progress, and future directions in the diagnosis of tuberculosis by evaluating the current methods of laboratory diagnosis of tuberculosis, with a special emphasis on microscopic examination and cultivation on solid and liquid media, as well as an approach to molecular assays. The microscopic method, although widely used, has its limitations, and the use and evaluation of other techniques are essential for a complete and accurate diagnosis. Bacterial cultures, both in solid and liquid media, are essential methods in the diagnosis of TB. Culture on a solid medium provides specificity and accuracy, while culture on a liquid medium brings rapidity and increased sensitivity. Molecular tests such as LPA and Xpert MTB/RIF have been found to offer significant benefits in the rapid and accurate diagnosis of TB, including drug-resistant forms. These tests allow the identification of resistance mutations and provide essential information for choosing the right treatment. We conclude that combined diagnostic methods, using several techniques and approaches, provide the best result in the laboratory diagnosis of TB. Improving the quality and accessibility of tests, as well as the implementation of advanced technologies, is essential to help improve the sensitivity, efficiency, and accuracy of TB diagnosis.
Collapse
Affiliation(s)
- Natalia Zaporojan
- Doctoral School of Biomedical Sciences, University of Oradea, Str. Universitatii 1, 410087 Oradea, Romania; (N.Z.)
| | - Rodica Anamaria Negrean
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania
| | - Ramona Hodișan
- Doctoral School of Biomedical Sciences, University of Oradea, Str. Universitatii 1, 410087 Oradea, Romania; (N.Z.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania
| | - Claudiu Zaporojan
- Emergency County Hospital Bihor, Str. Republicii 37, 410167 Oradea, Romania
| | - Andrei Csep
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania
| | - Dana Carmen Zaha
- Doctoral School of Biomedical Sciences, University of Oradea, Str. Universitatii 1, 410087 Oradea, Romania; (N.Z.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 December 10, 410087 Oradea, Romania
| |
Collapse
|