Fatima A, Aftab U, Shaaban KA, Thorson JS, Sajid I. Spore forming Actinobacterial diversity of Cholistan Desert Pakistan: Polyphasic taxonomy, antimicrobial potential and chemical profiling.
BMC Microbiol 2019;
19:49. [PMID:
30795744 PMCID:
PMC6387500 DOI:
10.1186/s12866-019-1414-x]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/08/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND
Actinobacteria are famous for the production of unique secondary metabolites that help in controlling the continuously emerging drug resistance all over the globe. This study aimed at the investigation of an extreme environment the Cholistan desert, located in southern Punjab, Pakistan, for actinobacterial diversity and their activity against methicillin resistant Staphylococcus aureus (MRSA). The Cholistan desert is a sub-tropical and arid ecosystem with harsh environment, limited rainfall and low humidity. The 20 soil and sand samples were collected from different locations in the desert and the actinobacterial strains were selectively isolated. The isolated strains were identified using a polyphasic taxonomic approach including morphological, biochemical, physiological characterization, scanning electron microscopy (SEM) and by 16S rRNA gene sequencing.
RESULTS
A total of 110 desert actinobacterial strains were recovered, which were found to be belonging to 3 different families of the order Actinomycetales, including the family Streptomycetaceae, family Pseudonocardiaceae and the family Micrococcaceae. The most frequently isolated genus was Streptomyces along with the genera Pseudonocardia and Arthrobacter. The isolated strains exhibited promising antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA) with zone of inhibition in the range of 9-32 mm in antimicrobial screening assays. The chemical profiling by thin layer chromatography, HPLC-UV/Vis and LC-MS analysis depicted the presence of different structural classes of antibiotics.
CONCLUSION
The study revealed that Cholistan desert harbors immense actinobacterial diversity and most of the strains produce structurally diverse bioactive secondary metabolites, which are a promising source of novel antimicrobial drug candidates.
Collapse