1
|
Pérez-Vega KA, Sanllorente A, Zomeño MD, Quindós A, Muñoz-Martínez J, Malcampo M, Aldea-Perona A, Hernáez Á, Lluansí A, Llirós M, Elias I, Elias-Masiques N, Aldeguer X, Muñoz D, Gaixas S, Blanchart G, Schröder H, Hernando-Redondo J, Carrón N, González-Torres P, Konstantinidou V, Fitó M, Castañer O. Sourdough Bread with Different Fermentation Times: A Randomized Clinical Trial in Subjects with Metabolic Syndrome. Nutrients 2024; 16:2380. [PMID: 39125261 PMCID: PMC11314010 DOI: 10.3390/nu16152380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The Mediterranean diet, featuring sourdough bread, shows promise in managing metabolic syndrome. This study explored the effects of two sourdough breads, with differing fermentation times but similar nutritional profiles, on inflammation, satiety, and gut microbiota composition in adults with metabolic syndrome. In a double-blind clinical trial, participants were randomized to consume either Elias Boulanger® long-fermentation (48 h) sourdough bread (EBLong) or Elias Boulanger® short-fermentation (2 h) sourdough bread (EBShort) over a two-month period. We assessed clinical parameters, inflammatory biomarkers, satiety-related hormones, and the richness and abundance of gut microbiota at baseline and follow-up. The participants included 31 individuals (mean age, 67, 51.6% female). EBShort was associated with reduced levels of soluble intercellular adhesion molecule (sICAM), and all participants, regardless of the intervention, exhibited a decrease in sICAM and diastolic pressure from baseline (p < 0.017). At follow-up, plasminogen activator inhibitor-1 (PAI-1) levels were lower in EBShort (-744 pg/mL; 95%CI: -282 to -1210 pg/mL) compared to EBLong. No differences in microbiota richness or abundance were observed. EBShort bread was effective in reducing some inflammation markers. The consumption of sourdough bread may offer potential benefits in reducing inflammation markers in individuals with metabolic syndrome; however, longer fermentation times did not show additional benefits.
Collapse
Affiliation(s)
- Karla Alejandra Pérez-Vega
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- PhD Program in Food Science and Nutrition, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Albert Sanllorente
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unitat de Suport a la Recerca Metropolitana Sud, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08907 Hospitalet de Llobregat, Spain
- Direcció d’Atenció Primària Metropolitana Sud, Institut Català de la Salut, 08907 Hospitalet de Llobregat, Spain
| | - María-Dolores Zomeño
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
| | - Ana Quindós
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Júlia Muñoz-Martínez
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Global Research on Wellbeing Research Group (GRoW), Facultat de Ciències de la Salut Blanquerna, Universitat Ramon Llull, 08025 Barcelona, Spain
- Research Group on Pedagogy, Society and Innovation with ICT Support (PSITIC), Facultat de Psicologia, Ciències de l’Educació i l’Esport Blanquerna, Universitat Ramon Llull, 08022 Barcelona, Spain
| | - Mireia Malcampo
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Ana Aldea-Perona
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Álvaro Hernáez
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
| | - Aleix Lluansí
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona, 17190 Salt, Spain; (A.L.); (M.L.); (X.A.)
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Marc Llirós
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona, 17190 Salt, Spain; (A.L.); (M.L.); (X.A.)
- Bioinformatics and Bioimaging (BI-SQUARED) Research Group, Biosciences Department, Faculty of Sciences, Technology and Engineerings Universitat de Vic—Universitat Central de Catalunya, 08500 Vic, Spain
| | - Isidre Elias
- Elias–Boulanger S.L., 08340 Vilassar de Mar, Spain; (I.E.)
| | | | - Xavier Aldeguer
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona, 17190 Salt, Spain; (A.L.); (M.L.); (X.A.)
- GoodGut S.L., 17003 Girona, Spain
- Digestive Service, Hospital Universitari de Girona Dr. Josep Trueta, 17007 Girona, Spain
| | - Daniel Muñoz
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sònia Gaixas
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Gemma Blanchart
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Helmut Schröder
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Hernando-Redondo
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nerea Carrón
- Microomics Systems S.L., 08041 Barcelona, Spain; (N.C.); (P.G.-T.)
| | | | - Valentini Konstantinidou
- Medoliali S.L. (DNANUTRICOACH®), 08006 Barcelona, Spain;
- Faculty of Health Sciences, Universitat Oberta de Catalunya (Open University of Catalonia, UOC), 08018 Barcelona, Spain
| | - Montserrat Fitó
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Olga Castañer
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Pilliol V, Beye M, Terlier L, Balmelle J, Kacel I, Lan R, Aboudharam G, Grine G, Terrer E. Methanobrevibacter massiliense and Pyramidobacter piscolens Co-Culture Illustrates Transkingdom Symbiosis. Microorganisms 2024; 12:215. [PMID: 38276200 PMCID: PMC10819710 DOI: 10.3390/microorganisms12010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Among oral microbiota methanogens, Methanobrevibacter massiliense (M. massiliense) has remained less studied than the well-characterised and cultivated methanogens Methanobrevibacter oralis and Methanobrevibacter smithii. M. massiliense has been associated with different oral pathologies and was co-isolated with the Synergistetes bacterium Pyramidobacter piscolens (P. piscolens) in one case of severe periodontitis. Here, reporting on two additional necrotic pulp cases yielded the opportunity to characterise two co-cultivated M. massiliense isolates, both with P. piscolens, as non-motile, 1-2-µm-long and 0.6-0.8-µm-wide Gram-positive coccobacilli which were autofluorescent at 420 nm. The two whole genome sequences featured a 31.3% GC content, gapless 1,834,388-base-pair chromosome exhibiting an 85.9% coding ratio, encoding a formate dehydrogenase promoting M. massiliense growth without hydrogen in GG medium. These data pave the way to understanding a symbiotic, transkingdom association with P. piscolens and its role in oral pathologies.
Collapse
Affiliation(s)
- Virginie Pilliol
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| | - Mamadou Beye
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Laureline Terlier
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Julien Balmelle
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Idir Kacel
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Romain Lan
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
- CNRS, EFS, ADES, Aix-Marseille University, 13385 Marseille, France
| | - Gérard Aboudharam
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| | - Ghiles Grine
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Elodie Terrer
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| |
Collapse
|
3
|
Cai P, Rong H, Zhu Q, Dai X, Zhao J. The potential roles of gut microbiome in anal fistula. AMB Express 2023; 13:58. [PMID: 37301777 DOI: 10.1186/s13568-023-01560-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
Anal fistula is a common proctological disease, but the thorough mechanisms of the anal fistula formation are still unclear. An increasing number of studies have revealed the crucial role of gut microbiota in intestinal diseases. We used 16S rRNA gene sequencing to analyze the intestinal microbiome in order to determine whether there are differences in the microbiome between anal fistula patients and healthy individuals. The microbiome samples were extracted by repeatedly wiping the rectal wall with intestinal swab. Before this operation, the whole intestine of all participants was irrigated and the score of the Boston bowel preparation scale reached 9. The biodiversity of gut microbiome of rectum revealed significant difference between anal fistula patients and healthy individuals. 36 discriminative taxa were identified by LEfSe analysis between two groups. At the phylum level, Synergistetes was enriched in anal fistula patients, while Proteobacteria was higher in healthy individuals. We also found that at the genus level, Blautia, Faecalibacterium, Ruminococcus, Coprococcus, Bacteroides, Clostridium, Megamonas and Anaerotruncus were highly enriched in anal fistula patients, while the microbiome of healthy individuals was enriched with Peptoniphilus and Corynebacterium. Spearman correlations showed the extensive and close association among genera and species. Finally, a diagnostic prediction model was constructed by random forest classifier, and the area under curve (AUC) reached 0.990. This study gave an important hint for analyzing gut microbiome of rectum in anal fistula patient.Keypoints.We use the 16S rRNA gene sequencing to test the microbiome samples extracted from the intestinal swab. This is the first study to explore the gut microbiome of rectum using this workflow. We also found the distinct gut microbiome of rectum differences between anal fistula patients and healthy individuals.
Collapse
Affiliation(s)
- Ping Cai
- Ningbo No.2 Hospital, Ningbo, 315000, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315000, China
| | - Hao Rong
- Ningbo No.2 Hospital, Ningbo, 315000, China.
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315000, China.
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, 315211, China.
| | - Qiaoqiao Zhu
- Ningbo No.2 Hospital, Ningbo, 315000, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315000, China
| | - Xiaoyu Dai
- Ningbo No.2 Hospital, Ningbo, 315000, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315000, China
| | - Jianpei Zhao
- Ningbo No.2 Hospital, Ningbo, 315000, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315000, China
| |
Collapse
|
4
|
García-García J, Diez-Echave P, Yuste ME, Chueca N, García F, Cabeza-Barrera J, Fernández-Varón E, Gálvez J, Colmenero M, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Morón R. Gut Microbiota Composition Can Predict Colonization by Multidrug-Resistant Bacteria in SARS-CoV-2 Patients in Intensive Care Unit: A Pilot Study. Antibiotics (Basel) 2023; 12:antibiotics12030498. [PMID: 36978365 PMCID: PMC10044413 DOI: 10.3390/antibiotics12030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The SARS-CoV-2 infection has increased the number of patients entering Intensive Care Unit (ICU) facilities and antibiotic treatments. Concurrently, the multi-drug resistant bacteria (MDRB) colonization index has risen. Considering that most of these bacteria are derived from gut microbiota, the study of its composition is essential. Additionally, SARS-CoV-2 infection may promote gut dysbiosis, suggesting an effect on microbiota composition. This pilot study aims to determine bacteria biomarkers to predict MDRB colonization risk in SARS-CoV-2 patients in ICUs. Seventeen adult patients with an ICU stay >48 h and who tested positive for SARS-CoV-2 infection were enrolled in this study. Patients were assigned to two groups according to routine MDRB colonization surveillance: non-colonized and colonized. Stool samples were collected when entering ICUs, and microbiota composition was determined through Next Generation Sequencing techniques. Gut microbiota from colonized patients presented significantly lower bacterial diversity compared with non-colonized patients (p < 0.05). Microbiota in colonized subjects showed higher abundance of Anaerococcus, Dialister and Peptoniphilus, while higher levels of Enterococcus, Ochrobactrum and Staphylococcus were found in non-colonized ones. Moreover, LEfSe analysis suggests an initial detection of Dialister propionicifaciens as a biomarker of MDRB colonization risk. This pilot study shows that gut microbiota profile can become a predictor biomarker for MDRB colonization in SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Jorge García-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Eugenia Yuste
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Medicina Intensiva, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Natalia Chueca
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERInfec), 18016 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERInfec), 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERInfec), 28029 Madrid, Spain
| | - Jose Cabeza-Barrera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Emilio Fernández-Varón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Colmenero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Medicina Intensiva, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
- Correspondence: (M.C.); (M.E.R.-C.)
| | - Maria Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (M.C.); (M.E.R.-C.)
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| |
Collapse
|
5
|
Xu XJ, Lang JD, Yang J, Long B, Liu XD, Zeng XF, Tian G, You X. Differences of gut microbiota and behavioral symptoms between two subgroups of autistic children based on γδT cells-derived IFN-γ Levels: A preliminary study. Front Immunol 2023; 14:1100816. [PMID: 36875075 PMCID: PMC9975759 DOI: 10.3389/fimmu.2023.1100816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background Autism Spectrum Disorders (ASD) are defined as a group of pervasive neurodevelopmental disorders, and the heterogeneity in the symptomology and etiology of ASD has long been recognized. Altered immune function and gut microbiota have been found in ASD populations. Immune dysfunction has been hypothesized to involve in the pathophysiology of a subtype of ASD. Methods A cohort of 105 ASD children were recruited and grouped based on IFN-γ levels derived from ex vivo stimulated γδT cells. Fecal samples were collected and analyzed with a metagenomic approach. Comparison of autistic symptoms and gut microbiota composition was made between subgroups. Enriched KEGG orthologues markers and pathogen-host interactions based on metagenome were also analyzed to reveal the differences in functional features. Results The autistic behavioral symptoms were more severe for children in the IFN-γ-high group, especially in the body and object use, social and self-help, and expressive language performance domains. LEfSe analysis of gut microbiota revealed an overrepresentation of Selenomonadales, Negatiyicutes, Veillonellaceae and Verrucomicrobiaceae and underrepresentation of Bacteroides xylanisolvens and Bifidobacterium longum in children with higher IFN-γ level. Decreased metabolism function of carbohydrate, amino acid and lipid in gut microbiota were found in the IFN-γ-high group. Additional functional profiles analyses revealed significant differences in the abundances of genes encoding carbohydrate-active enzymes between the two groups. And enriched phenotypes related to infection and gastroenteritis and underrepresentation of one gut-brain module associated with histamine degradation were also found in the IFN-γ-High group. Results of multivariate analyses revealed relatively good separation between the two groups. Conclusions Levels of IFN-γ derived from γδT cell could serve as one of the potential candidate biomarkers to subtype ASD individuals to reduce the heterogeneity associated with ASD and produce subgroups which are more likely to share a more similar phenotype and etiology. A better understanding of the associations among immune function, gut microbiota composition and metabolism abnormalities in ASD would facilitate the development of individualized biomedical treatment for this complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Xin-Jie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China.,Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Dong Lang
- Precision Medicine Center, Geneis Beijing Co., Ltd., Beijing, China
| | - Jun Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xu-Dong Liu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Geng Tian
- Precision Medicine Center, Geneis Beijing Co., Ltd., Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| |
Collapse
|
6
|
Changes in antibiotic residues and the gut microbiota during ciprofloxacin administration throughout Silkie chicken development. Poult Sci 2022; 102:102267. [PMID: 36442306 PMCID: PMC9709234 DOI: 10.1016/j.psj.2022.102267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The use of antibiotics leads to antibiotic residues in livestock and poultry products, adversely affecting human health. Ciprofloxacin (CFX) is a broad-spectrum antibiotic shared between animals and humans that is useful in treatments besides infections. However, changes in the gut microbiota caused by CFX and the possible link with the elimination of CFX residues have not been investigated. Herein, we used the Silkie chicken model to study the changes in the gut microbiota during the entire CFX-metabolic repertoire. We detected CFX residues in different tissues and showed that the elimination time of CFX from different tissues was dissimilar (liver > kidney > chest muscle > skin). Analysis of liver and kidney injury biomarkers and plasma antioxidant indices indicated slight hepatotoxicity and nephrotoxicity in the Silkie chickens. Importantly, the changes in the gut microbial community predominantly occurred early in the metabolic process. Correlation analysis revealed that the particular bacterial microbiota were associated with the pharmacokinetics of CFX in different Silkie chicken tissues (e.g., aerobic bacteria, including Escherichia and Coprococcus, and anaerobic bacteria, including Fusobacterium, Ruminococcus, Bifidobacterium, and Eubacterium). Collectively, certain microbiota may boost antibiotic metabolism and participate in restoring the microbial consortia after CFX is metabolized. Therefore, regulating the core intestinal microbiota may reduce foodborne antibiotics and accelerate the development of drug resistance.
Collapse
|
7
|
Williamson JR, Callaway TR, Lourenco JM, Ryman VE. Characterization of rumen, fecal, and milk microbiota in lactating dairy cows. Front Microbiol 2022; 13:984119. [PMID: 36225385 PMCID: PMC9549371 DOI: 10.3389/fmicb.2022.984119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting the gastrointestinal microbiome for improvement of feed efficiency and reduction of production costs is a potential promising strategy. However little progress has been made in manipulation of the gut microbiomes in dairy cattle to improve milk yield and milk quality. Even less understood is the milk microbiome. Understanding the milk microbiome may provide insight into how the microbiota correlate with milk yield and milk quality. The objective of this study was to characterize similarities between rumen, fecal, and milk microbiota simultaneously, and to investigate associations between microbiota, milk somatic cell count (SCC), and milk yield. A total of 51 mid-lactation, multiparous Holstein dairy cattle were chosen for sampling of ruminal, fecal, and milk contents that were processed for microbial DNA extraction and sequencing. Cows were categorized based on low, medium, and high SCC; as well as low, medium, and high milk yield. Beta diversity indicated that ruminal, fecal, and milk populations were distinct (p < 0.001). Additionally, the Shannon index demonstrated that ruminal microbial populations were more diverse (p < 0.05) than were fecal and milk populations, and milk microbiota was the least diverse of all sample types (p < 0.001). While diversity indices were not linked (p > 0.1) with milk yield, milk microbial populations from cows with low SCC demonstrated a more evenly distributed microbiome in comparison to cows with high SCC values (p = 0.053). These data demonstrate the complexity of host microbiomes both in the gut and mammary gland. Further, we conclude that there is a significant relationship between mammary health (i.e., SCC) and the milk microbiome. Whether this microbiome could be utilized in efforts to protect the mammary gland remains unclear, but should be explored in future studies.
Collapse
|
8
|
Liu Z, Sun J, Kong D, Wang Y, Tong X, Cao Y, Bi X, Meng F. Insights into gut microbiota communities of Poecilobdella manillensis, a prevalent Asian medicinal leech. J Appl Microbiol 2022; 133:1402-1413. [PMID: 35262268 DOI: 10.1111/jam.15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
AIMS Medicinal leeches (Annelida: Hirudinea) are fresh water ectoparasitic species which have been applied as traditional therapy. However, gut microbiota could bring high risks of opportunistic infections after leeching, and arouses great interests. Here gut bacterial and fungal communities of an Asian prevalent leech Poecilobdella manillensis, were characterized and analyzed through culture-independent sequencing. METHODS AND RESULTS With high coverage in 18 samples (>0.999), a more complicated community was apparent after comparing with previous leech studies. A total of 779/939 OTUs of bacteria and fungi were detected from leech guts. The bacterial community was dominated by phylum Bacteroidetes and Synergistetes. Genera Mucinivorans and Fretibacterium accounted mostly at the genus level. And genus Aeromonas showed an extremely low abundance (2.02%) on average. The fungal community was dominated by phylum Ascomycota and Basidiomycota. At the genus level, the dominant OTUs included Mortierella, Geminibasidium and Fusarium. The analysis of core taxa included those above dominant genera and some low-abundance genera (>1%). The functional annotation of bacterial community showed a close correlation with metabolism (34.8 ± 0.6%). Some fungal species were predicted as opportunistic human pathogens including Fusarium and Chaetomiaceae. CONCLUSIONS The present study provides fundamental rationales for further studies of such issues as bacteria-fungi-host interactions, host fitness, potential pathogens and infecting risks after leeching. It shall facilitate in-depth explorations on a safe utilization of leech therapy. SIGNIFICANCE AND IMPACT OF STUDY Present paper is the first-ever exploration on microbiota of a prevalent Asian medicinal leech based on culture-independent technical. And it is also the first report of gut fungi community of medicinal leech. The diversity and composition of bacteria in P. manillensis was far different from that of the European leech. The main components and core OTUs indicate a particular gut environment of medicinal leech. Unknown bacterial and fungal species were also recovered from leech gut.
Collapse
Affiliation(s)
- Zichao Liu
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Jianwei Sun
- Department of Medical Ultrasonography, Fifth Affiliated Hospital, Kunming Medical University, Gejiu, 661000, China
| | - Dejun Kong
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Yuxin Wang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Xiangrong Tong
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Yanru Cao
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Xiaoxu Bi
- Engineering Research Center for Exploitation & Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture & Life Sciences, Kunming University, Kunming, 650214, China
| | - Fanming Meng
- Department of Medical Parasitology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Yu B, Qiu H, Cheng S, Ye F, Li J, Chen S, Zhou L, Yang Y, Zhong C, Li J. Profile of gut microbiota in patients with traumatic thoracic spinal cord injury and its clinical implications: a case-control study in a rehabilitation setting. Bioengineered 2021; 12:4489-4499. [PMID: 34311653 PMCID: PMC8806552 DOI: 10.1080/21655979.2021.1955543] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gut microbiota are the candidate biomarkers for neurogenic bowel dysfunction (NBD) in patients with spinal cord injury (SCI). We aimed to identify the common features between patients with varying degree of thoracic SCI and healthy individuals and subpopulations of microbiota correlated with the serum biomarkers. Twenty-one patients with complete thoracic SCI (CTSCI), 24 with incomplete thoracic SCI (ITSCI), and 24 healthy individuals (HC) were enrolled in this study. Fresh stool samples and clinical data were collected from all participants, and their bowel functions with SCI were assessed. Microbial diversity and composition were analyzed by sequencing the 16S rRNA gene. The features of gut microbiota correlated with the serum biomarkers and their functions were investigated. The mean NBD score of patients with CTSCI was higher than that of patients with ITSCI. Diversity of the gut microbiota in SCI group was reduced, and with an increase in the degree of damage, alpha diversity had decreased gradually. The composition of gut microbiota in patients with SCI was distinct from that in healthy individuals, and CTSCI group exhibited further deviation than ITSCI group compared to healthy individuals. Four serum biomarkers were found to be correlated with most differential genera. Patients with thoracic SCI present gut dysbiosis, which is more pronounced in patients with CTSCI than in those with ITSCI. Therefore, the gut microbiota profile may serve as the signatures for bowel and motor functions in patients with thoracic SCI.
Collapse
Affiliation(s)
- Binbin Yu
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Huaide Qiu
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shupeng Cheng
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feng Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University
| | - Jiahui Li
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sijing Chen
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhou
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yumei Yang
- Spinal Cord Injury Ward, Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| | - Caiyun Zhong
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jianan Li
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
10
|
Shen H, Zhu J, Ye F, Xu D, Fang L, Yang J, Lv H, Lou Q, Jin H, Ni M, Zhang X. Biliary Microbial Structure of Gallstone Patients With a History of Endoscopic Sphincterotomy Surgery. Front Cell Infect Microbiol 2021; 10:594778. [PMID: 33585269 PMCID: PMC7873689 DOI: 10.3389/fcimb.2020.594778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
The biliary microbiota is related to the pathogenesis of human bile duct stones. However, the extent to which a history of invasive endoscopic sphincterotomy (EST) affects the biliary bacterial community remains largely unknown. We collected bile samples from the common bile duct of 100 choledocholithiasis patients. We performed 16S rRNA sequencing to investigate and compare the biliary microbial community. The patients without antibiotic treatment (AT) were grouped into three clusters based on their biliary microbial compositions. The patients with a history of EST were significantly enriched in one cluster mainly consisting of gastrointestinal bacteria compared with the other two clusters consisting of oral and environmental bacteria. The β-diversities of patients with and without EST were also significantly different, whereas the α-diversities were comparable. The only significantly enriched bacterial genus associated with a history of EST was Pyramidobacter, while eight other genera were significantly decreased. For patients with AT, seven of these genera maintained their association with EST, including Pyramidobacter. However, after AT, the difference in β-diversities was diminished. EST induced a marked shift in the biliary microbial composition. A cluster of biliary bacteria was associated with a history of EST, and Pyramidobacter was specific to EST.
Collapse
Affiliation(s)
- Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juanjuan Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fuqiang Ye
- Department of Disease Control and Prevention, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing, China
| | - Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangliang Fang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijie Lv
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qifeng Lou
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Ni
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Spring S, Premathilake H, Bradway C, Shili C, DeSilva U, Carter S, Pezeshki A. Effect of very low-protein diets supplemented with branched-chain amino acids on energy balance, plasma metabolomics and fecal microbiome of pigs. Sci Rep 2020; 10:15859. [PMID: 32985541 PMCID: PMC7523006 DOI: 10.1038/s41598-020-72816-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Feeding pigs with very-low protein (VLP) diets while supplemented with limiting amino acids (AA) results in decreased growth. The objective of this study was to determine if supplementing VLP diets with branched-chain AA (BCAA) would reverse the negative effects of these diets on growth and whether this is associated with alterations in energy balance, blood metabolomics and fecal microbiota composition. Twenty-four nursery pigs were weight-matched, individually housed and allotted into following treatments (n = 8/group): control (CON), low protein (LP) and LP supplemented with BCAA (LP + BCAA) for 4 weeks. Relative to CON, pigs fed with LP had lower feed intake (FI) and body weight (BW) throughout the study, but those fed with LP + BCAA improved overall FI computed for 4 weeks, tended to increase the overall average daily gain, delayed the FI and BW depression for ~ 2 weeks and had transiently higher energy expenditure. Feeding pigs with LP + BCAA impacted the phenylalanine and protein metabolism and fatty acids synthesis pathways. Compared to CON, the LP + BCAA group had higher abundance of Paludibacteraceae and Synergistaceae and reduced populations of Streptococcaceae, Oxyphotobacteria_unclassified, Pseudomonadaceae and Shewanellaceae in their feces. Thus, supplementing VLP diets with BCAA temporarily annuls the adverse effects of these diets on growth, which is linked with alterations in energy balance and metabolic and gut microbiome profile.
Collapse
Affiliation(s)
- Shelby Spring
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Hasitha Premathilake
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Chloe Bradway
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Cedrick Shili
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Udaya DeSilva
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Scott Carter
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA.
| |
Collapse
|
12
|
Riverain-Gillet É, Guet-Revillet H, Jais JP, Ungeheuer MN, Duchatelet S, Delage M, Lam T, Hovnanian A, Nassif A, Join-Lambert O. The Surface Microbiome of Clinically Unaffected Skinfolds in Hidradenitis Suppurativa: A Cross-Sectional Culture-Based and 16S rRNA Gene Amplicon Sequencing Study in 60 Patients. J Invest Dermatol 2020; 140:1847-1855.e6. [DOI: 10.1016/j.jid.2020.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/05/2020] [Accepted: 02/16/2020] [Indexed: 12/20/2022]
|
13
|
McCracken BA, Nathalia Garcia M. Phylum Synergistetes in the oral cavity: A possible contributor to periodontal disease. Anaerobe 2020; 68:102250. [PMID: 32791127 DOI: 10.1016/j.anaerobe.2020.102250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Microbial contributions to periodontal disease have been under renewed scrutiny with the advent of newer technologies to identify their presence and gene expression at the molecular level. Members of the phylum Synergistetes are some of the more recent bacteria to be associated with periodontal disease. Bacteria classified in this phylum can be found in a wide variety of habitats including both inside and outside of a mammalian host. Members of this phylum have been identified as part of the human microbiome. Indeed, many of the identified phylotypes have yet to be cultivated. Here we consider contributions of three named and formally described species to the oral microbial community and to pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Barbara Anne McCracken
- Section of Microbiology, Department of Growth, Development And Structure, 2800 College Ave., Alton, IL, 62002, USA.
| | - M Nathalia Garcia
- Southern Illinois University School of Dental Medicine, Alton, IL, 62002, USA
| |
Collapse
|
14
|
Birse KD, Kratzer K, Zuend CF, Mutch S, Noël-Romas L, Lamont A, Abou M, Jalil E, Veloso V, Grinsztejn B, Friedman RK, Broliden K, Bradley F, Poliquin V, Li F, Yanavich C, Burgener A, Aldrovandi G. The neovaginal microbiome of transgender women post-gender reassignment surgery. MICROBIOME 2020; 8:61. [PMID: 32370783 PMCID: PMC7201977 DOI: 10.1186/s40168-020-00804-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/10/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Gender reassignment surgery is a procedure some transgender women (TW) undergo for gender-affirming purposes. This often includes the construction of a neovagina using existing penile and scrotal tissue and/or a sigmoid colon graft. There are limited data regarding the composition and function of the neovaginal microbiome representing a major gap in knowledge in neovaginal health. RESULTS Metaproteomics was performed on secretions collected from the neovaginas (n = 5) and rectums (n = 7) of TW surgically reassigned via penile inversion/scrotal graft with (n = 1) or without (n = 4) a sigmoid colon graft extension and compared with secretions from cis vaginas (n = 32). We identified 541 unique bacterial proteins from 38 taxa. The most abundant taxa in the neovaginas were Porphyromonas (30.2%), Peptostreptococcus (9.2%), Prevotella (9.0%), Mobiluncus (8.0%), and Jonquetella (7.2%), while cis vaginas were primarily Lactobacillus and Gardnerella. Rectal samples were mainly composed of Prevotella and Roseburia. Neovaginas (median Shannon's H index = 1.33) had higher alpha diversity compared to cis vaginas (Shannon's H = 0.35) (p = 7.2E-3, Mann-Whitney U test) and were more similar to the non-Lactobacillus dominant/polymicrobial cis vaginas based on beta diversity (perMANOVA, p = 0.001, r2 = 0.342). In comparison to cis vaginas, toll-like receptor response, amino acid, and short-chain fatty acid metabolic pathways were increased (p < 0.01), while keratinization and cornification proteins were decreased (p < 0.001) in the neovaginal proteome. CONCLUSIONS Penile skin-lined neovaginas have diverse, polymicrobial communities that show similarities in composition to uncircumcised penises and host responses to cis vaginas with bacterial vaginosis (BV) including increased immune activation pathways and decreased epithelial barrier function. Developing a better understanding of microbiome-associated inflammation in the neovaginal environment will be important for improving our knowledge of neovaginal health. Video Abstract.
Collapse
Affiliation(s)
- Kenzie D Birse
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Ave, Winnipeg, MB, R3E 3 L5, Canada
- Departments of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada
| | - Kateryna Kratzer
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Ave, Winnipeg, MB, R3E 3 L5, Canada
- Departments of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada
| | - Christina Farr Zuend
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Ave, Winnipeg, MB, R3E 3 L5, Canada
- Departments of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada
| | - Sarah Mutch
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Ave, Winnipeg, MB, R3E 3 L5, Canada
- Departments of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada
| | - Laura Noël-Romas
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Ave, Winnipeg, MB, R3E 3 L5, Canada
- Departments of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada
| | - Alana Lamont
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Ave, Winnipeg, MB, R3E 3 L5, Canada
- Departments of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada
| | - Max Abou
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Ave, Winnipeg, MB, R3E 3 L5, Canada
| | - Emilia Jalil
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | - Valdiléa Veloso
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | | | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Frideborg Bradley
- Department of Medicine Solna, Center for Molecular Medicine, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vanessa Poliquin
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Fan Li
- University of California, Los Angeles, CA, USA
| | | | - Adam Burgener
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, 745 Logan Ave, Winnipeg, MB, R3E 3 L5, Canada.
- Departments of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medicine Solna, Center for Molecular Medicine, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada.
| | | |
Collapse
|
15
|
Planktonic and Sessile Artificial Colonic Microbiota Harbor Distinct Composition and Reestablish Differently upon Frozen and Freeze-Dried Long-Term Storage. mSystems 2020; 5:5/1/e00521-19. [PMID: 31964766 PMCID: PMC6977070 DOI: 10.1128/msystems.00521-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation has been successfully applied in the treatment of recurrent Clostridium difficile infection and has been suggested as an alternative therapy for other intestinal disorders such as inflammatory bowel disease or metabolic syndrome. “Artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation, but effective preservation strategies must be developed. In this study, we systematically investigated the response of sessile and planktonic artificial colonic microbiota to cryopreservation and lyophilization. We suggest that functional redundancy is an important factor in providing functional stability with respect to exposure to stress during processing and storage. Functional redundancy in compositionally reduced microbial systems may be considered when designing microbial products for therapy. Biofilm-associated, sessile communities represent the major bacterial lifestyle, whereas planktonic cells mainly appear during initial colonization of new surfaces. Previous research, mainly performed with pathogens, demonstrated increased environmental stress tolerance of biofilm-growing compared to planktonic bacteria. The lifestyle-specific stress response of colonic microbiota, both natural and fermentation produced, has not been addressed before. Planktonic and sessile “artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation in treating gastrointestinal disorders. We therefore characterized planktonic and sessile microbiota produced in two PolyFermS models inoculated with immobilized fecal microbiota and comparatively tested their levels of tolerance of frozen storage (–80°C) and freeze-dried storage (4°C) for 9 months to mimic preservation strategies for therapeutic applications. Sessile microbiota harbored next to shared taxa a unique community distinguishable from planktonic microbiota. Synergistetes and Proteobacteria were highly represented in sessile microbiota, while Firmicutes were more abundant in planktonic microbiota. The community structure and metabolic activity of both microbiota, monitored during standardized reactivation batch fermentations, were better preserved after frozen storage than dried storage, indicated by higher Bray-Curtis similarity and enhanced recovery of metabolite production. For both lifestyles, reestablishment of Bacteroidaceae was impaired after frozen and dried storage along with reduced propionate formation. In contrast, butyrate production was maintained after reactivation despite compositional rearrangements within the butyrate-producing community. Unexpectedly, the rate of recovery of metabolite production was lower after preservation of sessile than planktonic microbiota. We speculate that higher functional dependencies between microbes might have led to the lower stress tolerance of sessile than planktonic microbiota. IMPORTANCE Fecal microbiota transplantation has been successfully applied in the treatment of recurrent Clostridium difficile infection and has been suggested as an alternative therapy for other intestinal disorders such as inflammatory bowel disease or metabolic syndrome. “Artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation, but effective preservation strategies must be developed. In this study, we systematically investigated the response of sessile and planktonic artificial colonic microbiota to cryopreservation and lyophilization. We suggest that functional redundancy is an important factor in providing functional stability with respect to exposure to stress during processing and storage. Functional redundancy in compositionally reduced microbial systems may be considered when designing microbial products for therapy.
Collapse
|
16
|
Zhou L, Ni Z, Cheng W, Yu J, Sun S, Zhai D, Yu C, Cai Z. Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocr Connect 2020; 9:63-73. [PMID: 31972546 PMCID: PMC6993273 DOI: 10.1530/ec-19-0522] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a chronic endocrine and metabolic disease. Gut microbiota is closely related to many chronic diseases. In this study, we conducted a cross-sectional study and recruited 30 obese (OG) and 30 non-obese (NG) women with PCOS, 30 healthy women (NC) and 11 healthy but obese women (OC) as controls to investigate the characteristic gut microbiota and its metabolic functions in obese and non-obese patients with PCOS. The blood and non-menstrual faecal samples of all the participants were collected and analysed. As a result, the Hirsutism score, LH/FSH and serum T level in NG and OG both increased significantly compared with their controls (P < 0.05). High-throughput 16S rRNA gene sequencing revealed that the abundance and diversity of the gut microbiota changed in patients with PCOS. The linear discriminant analysis (LDA) indicated that Lactococcus was the characteristic gut microbiota in NG, while Coprococcus_2 in OG. Correlation heatmap analysis revealed that the sex hormones and insulin levels in human serum were closely related to the changes in the gut microbiota of NG and OG. Functional prediction analysis demonstrated that the citrate cycle pathway enriched both in NG and OG, and other 12 gut bacterial metabolic pathways enriched in NG. This study highlighted significant differences in the gut microbiota and predictive functions of obese and non-obese women with PCOS, thereby providing insights into the role and function of the gut microbiota that may contribute to the occurrence and development of PCOS in obese and non-obese women.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen Cheng
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dongxia Zhai
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
- Correspondence should be addressed to C Yu or Z Cai: or
| | - Zailong Cai
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai, China
- Correspondence should be addressed to C Yu or Z Cai: or
| |
Collapse
|
17
|
Robles-Vera I, Callejo M, Ramos R, Duarte J, Perez-Vizcaino F. Impact of Vitamin D Deficit on the Rat Gut Microbiome. Nutrients 2019; 11:nu11112564. [PMID: 31652902 PMCID: PMC6893507 DOI: 10.3390/nu11112564] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
Inadequate immunologic, metabolic and cardiovascular homeostasis has been related to either an alteration of the gut microbiota or to vitamin D deficiency. We analyzed whether vitamin D deficiency alters rat gut microbiota. Male Wistar rats were fed a standard or a vitamin D-free diet for seven weeks. The microbiome composition was determined in fecal samples by 16S rRNA gene sequencing. The vitamin D-free diet produced mild changes on α- diversity but no effect on β-diversity in the global microbiome. Markers of gut dysbiosis like Firmicutes-to-Bacteroidetes ratio or the short chain fatty acid producing bacterial genera were not significantly affected by vitamin D deficiency. Notably, there was an increase in the relative abundance of the Enterobacteriaceae, with significant rises in its associated genera Escherichia, Candidatus blochmannia and Enterobacter in vitamin D deficient rats. Prevotella and Actinomyces were also increased and Odoribacteraceae and its genus Butyricimonas were decreased in rats with vitamin D-free diet. In conclusion, vitamin D deficit does not induce gut dysbiosis but produces some specific changes in bacterial taxa, which may play a pathophysiological role in the immunologic dysregulation associated with this hypovitaminosis.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, Universidad de Granada, 18071 Granada, Spain.
- Ciber Enfermedades Cardiovasculares (CiberCV), 28029 Madrid, Spain.
| | - María Callejo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (Ciberes), 28029 Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007 Madrid, Spain.
| | - Ricardo Ramos
- Fundación Parque Científico de Madrid, 28049 Madrid, Spain.
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, Universidad de Granada, 18071 Granada, Spain.
- Ciber Enfermedades Cardiovasculares (CiberCV), 28029 Madrid, Spain.
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (Ciberes), 28029 Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007 Madrid, Spain.
| |
Collapse
|
18
|
Bui TP, Troise AD, Fogliano V, de Vos WM. Anaerobic Degradation of N-ε-Carboxymethyllysine, a Major Glycation End-Product, by Human Intestinal Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6594-6602. [PMID: 31091091 PMCID: PMC6566499 DOI: 10.1021/acs.jafc.9b02208] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Modifications of lysine contribute to the amount of dietary advanced glycation end-products reaching the colon. However, little is known about the ability of intestinal bacteria to metabolize dietary N-ε-carboxymethyllysine (CML). Successive transfers of fecal microbiota in growth media containing CML were used to identify and isolate species able to metabolize CML under anaerobic conditions. From our study, only donors exposed to processed foods degraded CML, and anaerobic bacteria enrichments from two of them used 77 and 100% of CML. Oscillibacter and Cloacibacillus evryensis increased in the two donors after the second transfer, highlighting that the bacteria from these taxa could be candidates for anaerobic CML degradation. A tentative identification of CML metabolites produced by a pure culture of Cloacibacillus evryensis was performed by mass spectrometry: carboxymethylated biogenic amines and carboxylic acids were identified as CML degradation products. The study confirmed the ability of intestinal bacteria to metabolize CML under anoxic conditions.
Collapse
Affiliation(s)
- Thi Phuong
Nam Bui
- Laboratory
of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands
- Caelus
Pharmaceuticals, 3473 KG Zegveld, The Netherlands
| | - Antonio Dario Troise
- Department
of Agricultural Sciences, University of
Naples “Federico II”, 80055 Portici, Italy
| | - Vincenzo Fogliano
- Food
Quality & Design Group, Wageningen University, 6708 WG Wageningen, The Netherlands
- Tel: +31317485171; E-mail: . (V.F.)
| | - Willem M. de Vos
- Laboratory
of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands
- Caelus
Pharmaceuticals, 3473 KG Zegveld, The Netherlands
- Human
Microbiome Research Programme, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
19
|
Zearalenone Changes the Diversity and Composition of Caecum Microbiota in Weaned Rabbit. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3623274. [PMID: 30402473 PMCID: PMC6196994 DOI: 10.1155/2018/3623274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Abstract
Mycotoxins exhibit several severe effects on intestinal health, but few studies have assessed mycotoxins effect on the intestinal microflora and its repercussions to humans and animals. In this study, we evaluated the effect of zearalenone (ZEA), one of the most harmful mycotoxins on the structure of caecal microbiota in rabbits. Twenty-eight male weaned rabbits were randomly divided into four groups and orally given different concentrations of ZEA (400, 800, and 1600 μg/kg.b.w). Microbial communities in caecum samples of rabbits were analyzed for 16S rRNA by Illumina sequencing through Illumina Miseq platform after being fed for 28 days. The results showed that increasing ZEA doses increased the species richness but did not significantly increased the species diversity of the caecum microbiota in the rabbits. In addition, the caecum microbiota from the samples in different ZEA-treated groups was clustered according to their dosing regimens. At the phylum level, ZEA decreased the abundance of Actinobacteria and significantly increased the abundance of Cyanobacteria, Synergistetes, and Proteobacteria. At the genus level, there were declines in the abundance of Adlercreutzia, Blautia, Desulfitobacter, Lactobacillus, Oxalobacter, and p-75-a5. The decrease of abundance in Lactobacillus, Desulfitobacter, and p-75-a5 was particularly noticeable. In conclusion, zearalenone could increase α-diversity but significantly decrease the abundance of some bacteria with the important metabolic functions. These findings suggested that ZEA could modify the caecum microbiota.
Collapse
|
20
|
Liu L, Firrman J, Tanes C, Bittinger K, Thomas-Gahring A, Wu GD, Van den Abbeele P, Tomasula PM. Establishing a mucosal gut microbial community in vitro using an artificial simulator. PLoS One 2018; 13:e0197692. [PMID: 30016326 PMCID: PMC6050037 DOI: 10.1371/journal.pone.0197692] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
The Twin Simulator of the Human Intestinal Microbial Ecosystem (TWINSHIME®) was initially developed to study the luminal gut microbiota of the ascending (AC), transverse (TC), and descending (DC) colon regions. Given the unique composition and potential importance of the mucosal microbiota for human health, the TWINSHIME was recently adapted to simulate the mucosal microbiota as well as the luminal community. It has been previously demonstrated that the luminal community in the TWINSHIME reaches a steady state within two weeks post inoculation, and is able to differentiate into region specific communities. However, less is known regarding the mucosal community structure and dynamics. During the current study, the luminal and mucosal communities in each region of the TWINSHIME were evaluated over the course of six weeks. Based on 16S rRNA gene sequencing and short chain fatty acid analysis, it was determined that both the luminal and mucosal communities reached stability 10–20 days after inoculation, and remained stable until the end of the experiment. Bioinformatics analysis revealed the formation of unique community structures between the mucosal and luminal phases in all three colon regions, yet these communities were similar to the inoculum. Specific colonizers of the mucus mainly belonged to the Firmicutes phylum and included Lachnospiraceae (AC/TC/DC), Ruminococcaceae and Eubacteriaceae (AC), Lactobacillaceae (AC/TC), Clostridiaceae and Erysipelotrichaceae (TC/DC). In contrast, Bacteroidaceae were enriched in the gut lumen of all three colon regions. The unique profile of short chain fatty acid (SCFA) production further demonstrated system stability, but also proved to be an area of marked differences between the in vitro system and in vivo reports. Results of this study demonstrate that it is possible to replicate the community structure and composition of the gut microbiota in vitro. Through implementation of this system, the human gut microbiota can be studied in a dynamic and continuous fashion.
Collapse
Affiliation(s)
- LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
- * E-mail:
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Audrey Thomas-Gahring
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Gary D. Wu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Peggy M. Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| |
Collapse
|
21
|
Microbiome of peri -implantitis affected and healthy dental sites in patients with a history of chronic periodontitis. Arch Oral Biol 2017; 83:145-152. [DOI: 10.1016/j.archoralbio.2017.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/26/2022]
|
22
|
Wu ZX, Li SF, Chen H, Song JX, Gao YF, Zhang F, Cao CF. The changes of gut microbiota after acute myocardial infarction in rats. PLoS One 2017; 12:e0180717. [PMID: 28686722 PMCID: PMC5501596 DOI: 10.1371/journal.pone.0180717] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
Recent studies suggested that gut microbiota was involved in the development of coronary artery disease. However, the changes of gut microbiota following acute myocardial infarction (AMI) remain unknown. In this study, a total of 66 male Wistar rats were randomly divided into control, AMI and SHAM groups. The controls (n = 6) were sacrificed after anesthesia. The AMI model was built by ligation of left anterior descending coronary artery. The rats of AMI and SHAM groups were sacrificed at 12 h, 1 d, 3 d, 7 d and 14 d post-operation respectively. Gut microbiota was analyzed by 16S rDNA high throughput sequencing. The gut barrier injuries were evaluated through histopathology, transmission electron microscope and immunohistochemical staining. The richness of gut microbiota was significantly higher in AMI group than SHAM group at 7 d after AMI (P<0.05). Principal coordinate analysis with unweighted UniFrac distances revealed microbial differences between AMI and SHAM groups at 7 d. The gut barrier impairment was also the most significant at 7 d post-AMI. We further identified the differences of microorganisms between AMI and SHAM group at 7 d. The abundance of Synergistetes phylum, Spirochaetes phylum, Lachnospiraceae family, Syntrophomonadaceae family and Tissierella Soehngenia genus was higher in AMI group compared with SHAM group at 7 d post-operation (q<0.05). Our study showed the changes of gut microbiota at day 7 post AMI which was paralleled with intestinal barrier impairment. We also identified the microbial organisms that contribute most.
Collapse
Affiliation(s)
- Ze-Xuan Wu
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Su-Fang Li
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
- * E-mail:
| | - Jun-Xian Song
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| | - Yuan-Feng Gao
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| | - Cheng-Fu Cao
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing, China
- Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
23
|
Next-generation sequencing characterization of the gut bacterial community of gilthead sea bream (Sparus aurata, L.) fed low fishmeal based diets with increasing soybean meal levels. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.10.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Wei X, Jiang S, Zhao X, Li H, Lin W, Li B, Lu J, Sun Y, Yuan J. Community-Metabolome Correlations of Gut Microbiota from Child-Turcotte-Pugh of A and B Patients. Front Microbiol 2016; 7:1856. [PMID: 27899923 PMCID: PMC5110571 DOI: 10.3389/fmicb.2016.01856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
The gut flora are widely involved in the cometabolism with the host and have evident effects on the metabolic phenotype of host. This study performed a metabolome analysis of the intestinal microbiota specific for liver cirrhosis. The study population included patients with Child-Turcotte-Pugh score of A (AP, n = 5) and B (BP, n = 5), and control subjects (NM, n = 3). Metagenomic DNA from fecal microbiota was extracted followed by metagenomic sequencing through Illumina MiSeq high throughput sequencing of 16S rRNA regions. The detection of metabolites from fecal samples was performed using high-performance liquid phase chromatography and gas chromatography coupled with tandem mass spectrometry. Intestinal microbiota community and metabolite analysis both showed separation of cirrhotic patients from control participants, moreover, the microbiota–metabolite correlations changed in cirrhotic patients. Fecal microbiota from cirrhotic patients, with the reduced diversity, contained a decreased abundance of Bacteroidetes and an increased abundance of Firmicutes and Proteobacteria compared with the normal samples. Analysis of metabolome revealed a remarkable change in the metabolic potential of the microbiota in cirrhotic patients, with specific higher concentrations of amine, unsaturated fatty acid, and short-chain fatty acids, and lower concentrations of sugar alcohol and amino acid, suggesting the initial equilibrium of gut microbiota community and co-metabolism with the host were perturbed by cirrhosis. Our study illustrated the relationship between fecal microbiota composition and metabolome in cirrhotic patients, which may improve the clinical prognosis of cirrhosis.
Collapse
Affiliation(s)
- Xiao Wei
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| | - Shan Jiang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| | - Huan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| | - Weishi Lin
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| | - Boxing Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| | - Jing Lu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District Beijing, China
| |
Collapse
|
25
|
Yu XL, Chan Y, Zhuang LF, Lai HC, Lang NP, Lacap-Bugler DC, Leung WK, Watt RM. Distributions of Synergistetes in clinically-healthy and diseased periodontal and peri-implant niches. Microb Pathog 2016; 94:90-103. [DOI: 10.1016/j.micpath.2015.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
|
26
|
Gao W, Chan Y, You M, Lacap-Bugler DC, Leung WK, Watt RM. In-depth snapshot of the equine subgingival microbiome. Microb Pathog 2016; 94:76-89. [DOI: 10.1016/j.micpath.2015.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022]
|
27
|
Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts. PLoS One 2016; 11:e0150519. [PMID: 26930491 PMCID: PMC4773253 DOI: 10.1371/journal.pone.0150519] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/15/2016] [Indexed: 02/08/2023] Open
Abstract
Biliary bacteria have been implicated in gallstone pathogenesis, though a clear understanding of their composition and source is lacking. Moreover, the effects of the biliary environment, which is known to be generally hostile to most bacteria, on biliary bacteria are unclear. Here, we investigated the bacterial communities of the biliary tract, duodenum, stomach, and oral cavity from six gallstone patients by using 16S rRNA amplicon sequencing. We found that all observed biliary bacteria were detectable in the upper digestive tract. The biliary microbiota had a comparatively higher similarity with the duodenal microbiota, versus those of the other regions, but with a reduced diversity. Although the majority of identified bacteria were greatly diminished in bile samples, three Enterobacteriaceae genera (Escherichia, Klebsiella, and an unclassified genus) and Pyramidobacter were abundant in bile. Predictive functional analysis indicated enhanced abilities of environmental information processing and cell motility of biliary bacteria. Our study provides evidence for the potential source of biliary bacteria, and illustrates the influence of the biliary system on biliary bacterial communities.
Collapse
|
28
|
Jumas-Bilak E, Bouvet P, Allen-Vercoe E, Aujoulat F, Lawson PA, Jean-Pierre H, Marchandin H. Rarimicrobium hominis gen. nov., sp. nov., representing the fifth genus in the phylum Synergistetes that includes human clinical isolates. Int J Syst Evol Microbiol 2015; 65:3965-3970. [PMID: 26320053 DOI: 10.1099/ijsem.0.000520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5-91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).
Collapse
Affiliation(s)
- Estelle Jumas-Bilak
- Université de Montpellier, Unité Mixte de Recherche 5569 - Hydrosciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Unité de Bactériologie, Faculté de Pharmacie, 15, Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France.,Centre Hospitalier Universitaire de Montpellier, Laboratoire d'Hygiène Hospitalière, 778 rue de la croix verte, 34295 Montpellier Cedex 5, France
| | - Philippe Bouvet
- Institut Pasteur, Centre National de Référence des Bactéries Anaérobies et du Botulisme, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Emma Allen-Vercoe
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Fabien Aujoulat
- Université de Montpellier, Unité Mixte de Recherche 5569 - Hydrosciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Unité de Bactériologie, Faculté de Pharmacie, 15, Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | - Paul A Lawson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Hélène Jean-Pierre
- Université de Montpellier, Unité Mixte de Recherche 5569 - Hydrosciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Unité de Bactériologie, Faculté de Pharmacie, 15, Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France.,Centre Hospitalier Universitaire de Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Bactériologie, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - Hélène Marchandin
- Centre Hospitalier Universitaire de Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Bactériologie, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,Université de Montpellier, Unité Mixte de Recherche 5569 - Hydrosciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Unité de Bactériologie, Faculté de Pharmacie, 15, Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| |
Collapse
|
29
|
Camanocha A, Dewhirst FE. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol 2014; 6:25468. [PMID: 25317252 PMCID: PMC4192840 DOI: 10.3402/jom.v6.25468] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful for identifying previously unrecognized taxa in lesser-known phyla and would be useful for future environmental and host-associated studies.
Collapse
Affiliation(s)
- Anuj Camanocha
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Floyd E Dewhirst
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA ; Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
30
|
Identification of Synergistetes in endodontic infections. Microb Pathog 2014; 73:1-6. [DOI: 10.1016/j.micpath.2014.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 11/24/2022]
|
31
|
Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 2013; 80:574-85. [PMID: 24212576 DOI: 10.1128/aem.03016-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
One of the functions of the mammalian large intestinal microbiota is the fermentation of plant cell wall components. In ruminant animals, the majority of their nutrients are obtained via pregastric fermentation; however, up to 20% can be recovered from microbial fermentation in the large intestine. Eight-week continuous culture enrichments of cattle feces with cellulose and xylan-pectin were used to isolate bacteria from this community. A total of 459 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented: Firmicutes (51.9%), Bacteroidetes (30.9%), Proteobacteria (11.1%), Actinobacteria (3.5%), Synergistetes (1.5%), and Fusobacteria (1.1%). The majority of bacterial isolates had <98.5% identity to cultured bacteria with sequences in the Ribosomal Database Project and thus represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, B. ovatus, and B. xylanisolvens and members of the Porphyromonadaceae family. Many of the Firmicutes and Bacteroidetes isolates were related to species demonstrated to possess enzymes which ferment plant cell wall components; the others were hypothesized to cross-feed these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 98% of the isolates not represented as previously cultured, there are new opportunities to study the genomic and metabolic capacities of these members of the complex intestinal microbiota.
Collapse
|
32
|
Ziemer CJ. Broad diversity and newly cultured bacterial isolates from enrichment of pig feces on complex polysaccharides. MICROBIAL ECOLOGY 2013; 66:448-461. [PMID: 23354293 DOI: 10.1007/s00248-013-0185-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
One of the fascinating functions of mammalian intestinal microbiota is fermentation of plant cell wall components. Eight-week continuous culture enrichments of pig feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 575 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented in the bacterial isolates: Firmicutes (242), Bacteroidetes (185), Proteobacteria (65), Fusobacteria (55), Actinobacteria (23), and Synergistetes (5). The majority of the bacterial isolates had ≥ 97 % similarity to cultured bacteria with sequences in the RDP, but 179 isolates represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families of Lachnospiraceae, Enterococcaceae, Staphylococcaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, Bacteroides ovatus, and B. xylanisolvens. Many of the Firmicutes and Bacteroidetes isolates were identified as species that possess enzymes that ferment plant cell wall components, and the rest likely support these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 30 % of the isolates not represented in culture, there are new opportunities to study genomic and metabolic capacities of these members of the complex intestinal microbiota.
Collapse
Affiliation(s)
- Cherie J Ziemer
- USDA, Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, IA 50010, USA.
| |
Collapse
|
33
|
Belibasakis GN, Öztürk VÖ, Emingil G, Bostanci N. Synergistetes
cluster A in saliva is associated with periodontitis. J Periodontal Res 2013; 48:727-32. [DOI: 10.1111/jre.12061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Affiliation(s)
- G. N. Belibasakis
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| | - V.-Ö. Öztürk
- Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
- Department of Periodontology; School of Dentistry; Ege University; İzmir Turkey
| | - G. Emingil
- Department of Periodontology; School of Dentistry; Ege University; İzmir Turkey
| | - N. Bostanci
- Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| |
Collapse
|
34
|
Looft T, Levine UY, Stanton TB. Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus. Int J Syst Evol Microbiol 2012; 63:1960-1966. [PMID: 23041639 PMCID: PMC3709534 DOI: 10.1099/ijs.0.044719-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, mesophilic, amino-acid-fermenting bacterium, designated strain CL-84T, was isolated from the swine intestinal tract on mucin-based media. Cells were curved rods (0.8–1.2×3.5–5.0 µm), stained Gram-negative and were non-motile with no evidence of spores. Strain CL-84T produced acetate, propionate, formate and butyrate as the end products of metabolism when grown on serine. Optimum growth occurred at 39 °C and pH 6.5. The major cellular fatty acids were iso-C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 and C16 : 0, distinguishing strain CL-84T from closely related species. The DNA G+C content of strain CL-84T was 55.1 mol%. 16S rRNA gene sequence analysis showed that strain CL-84T shared 90–95 % similarity with characterized genera within the phylum Synergistetes, family Synergistaceae. Phylogenetic analysis showed that strain CL-84T was related to, but distinct from, Cloacibacillus evryensis. Based on these findings, we propose that strain CL-84T represents a novel species of the genus Cloacibacillus. We further propose the name Cloacibacillus porcorum sp. nov. be designated for this species. The type strain is CL-84T ( = DSM 25858T = CCUG 62631T). An emended description of the genus Cloacibacillus is provided.
Collapse
Affiliation(s)
- T Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | - U Y Levine
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | - T B Stanton
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
35
|
Baumgartner A, Thurnheer T, Lüthi-Schaller H, Gmür R, Belibasakis GN. The phylum Synergistetes in gingivitis and necrotizing ulcerative gingivitis. J Med Microbiol 2012; 61:1600-1609. [PMID: 22878253 DOI: 10.1099/jmm.0.047456-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clinical manifestation of necrotizing ulcerative gingivitis (NUG) is distinct from that of common gingivitis in that it is characterized by local necrosis of the gingival tissues, rapid onset, pain and extensive bleeding. The phylum Synergistetes is a novel bacterial phylum consisting of Gram-negative anaerobes, with evidence of presence in biofilms associated with periodontal and endodontic infections. To date, the involvement of members of this phylum in NUG has not been investigated. This study aimed to evaluate the presence and levels of known human oral Synergistetes bacterial clusters in dental plaque from patients with NUG and compare them with those found in gingivitis. Marginal dental plaque samples from 21 NUG and 21 gingivitis patients were analysed quantitatively by fluorescent in situ hybridization and microscopy for members of two oral Synergistetes clusters (A and B) and for Jonquetella anthropi. Synergistetes cluster A bacteria were detected in all samples but at higher levels (9.4-fold) and proportions (2.5-fold) in NUG patients than in gingivitis patients. However, with regard to Synergistetes cluster B bacteria, there were no differences between NUG and gingivitis patients. J. anthropi was detected in only half of the samples and at lower levels than the other taxa. In conclusion, these data demonstrate that Synergistetes cluster A bacteria, but not cluster B bacteria or J. anthropi, are more strongly associated with NUG than with gingivitis.
Collapse
Affiliation(s)
- Angelica Baumgartner
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Helga Lüthi-Schaller
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Rudolf Gmür
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| |
Collapse
|
36
|
You M, Mo S, Watt RM, Leung WK. Prevalence and diversity of Synergistetes taxa in periodontal health and disease. J Periodontal Res 2012; 48:159-68. [PMID: 22881378 DOI: 10.1111/j.1600-0765.2012.01516.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Members of the phylum Synergistetes have previously been identified within periodontitis subgingival plaque and are considered putative periodontopathogens. This study compared the diversity of subginigval Synergistetes in a cohort of subjects with periodontitis (n = 10) vs. periodontitis-free controls (n = 10). MATERIAL AND METHODS Pooled subgingival plaque samples from all deep periodontal pockets or all sulci were collected from the periodontitis and periodontitis-free subjects, respectively. Bacterial 16S rRNA genes were PCR-amplified from purified subgingival plaque DNA using a Synergistetes 'selective' primer set. PCR products were cloned and sequenced to analyze the prevalence and diversity of Synergistetes operational taxonomic units (OTUs) present in plaque samples of both subject groups. RESULTS A total of 1030 non-chimeric 16S rRNA clones were obtained, of which 162 corresponded to members of the phylum Synergistetes. A significantly larger number of Synergistetes clones were obtained from periodontitis subgingival plaque than from periodontitis-free controls (25.4% vs. 5.9%, p < 0.001). All Synergistetes clones corresponded to cluster A oral Synergistetes, and fell into 31 OTUs (99% sequence identity cut-off). Twenty-nine Synergistetes OTUs were detected in the periodontitis group while eight were detected in the periodontitis-free group (p < 0.001). Five Synergistetes OTUs; including one OTU corresponding to the recently-characterized species Fretibacterium fastidiosum, were more prevalent in the periodontitis subjects (p < 0.05). CONCLUSION OTUs belonging to oral Synergistetes cluster A were more readily detectable and were more diverse in subgingival plaque from periodontitis subjects compared with periodontitis-free controls. Specific Synergistetes OTUs appear to be associated with periodontitis.
Collapse
Affiliation(s)
- M You
- Oral Diagnosis and Polyclinics, Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
37
|
Molecular signatures for the phylum Synergistetes and some of its subclades. Antonie Van Leeuwenhoek 2012; 102:517-40. [DOI: 10.1007/s10482-012-9759-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
|
38
|
Davis CK, Webb RI, Sly LI, Denman SE, McSweeney CS. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes. FEMS Microbiol Ecol 2012; 80:671-84. [PMID: 22372434 DOI: 10.1111/j.1574-6941.2012.01338.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/16/2012] [Accepted: 02/12/2012] [Indexed: 11/29/2022] Open
Abstract
Microbial dehalogenation of chlorinated compounds in anaerobic environments is well known, but the degradation of fluorinated compounds under similar conditions has rarely been described. Here, we report on the isolation of a bovine rumen bacterium that metabolizes fluoroacetate under anaerobic conditions, the mode of degradation and its presence in gut ecosystems. The bacterium was identified using 16S rRNA gene sequence analysis as belonging to the phylum Synergistetes and was designated strain MFA1. Growth was stimulated by amino acids with greater quantities of amino acids metabolized in the presence of fluoroacetate, but sugars were not fermented. Acetate, formate, propionate, isobutryate, isovalerate, ornithine and H(2) were end products of amino acid metabolism. Acetate was the primary end product of fluoroacetate dehalogenation, and the amount produced correlated with the stoichiometric release of fluoride which was confirmed using fluorine nuclear magnetic resonance ((19) F NMR) spectroscopy. Hydrogen and formate produced in situ were consumed during dehalogenation. The growth characteristics of strain MFA1 indicated that the bacterium may gain energy via reductive dehalogenation. This is the first study to identify a bacterium that can anaerobically dehalogenate fluoroacetate. Nested 16S rRNA gene-specific PCR assays detected the bacterium at low numbers in the gut of several herbivore species.
Collapse
Affiliation(s)
- Carl K Davis
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, Qld, Australia
| | | | | | | | | |
Collapse
|
39
|
Ribeiro AC, Matarazzo F, Faveri M, Zezell DM, Mayer MPA. Exploring bacterial diversity of endodontic microbiota by cloning and sequencing 16S rRNA. J Endod 2011; 37:922-6. [PMID: 21689545 DOI: 10.1016/j.joen.2011.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/08/2011] [Accepted: 04/10/2011] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The characterization of microbial communities infecting the endodontic system in each clinical condition may help on the establishment of a correct prognosis and distinct strategies of treatment. The purpose of this study was to determine the bacterial diversity in primary endodontic infections by 16S ribosomal-RNA (rRNA) sequence analysis. METHODS Samples from root canals of untreated asymptomatic teeth (n = 12) exhibiting periapical lesions were obtained, 16S rRNA bacterial genomic libraries were constructed and sequenced, and bacterial diversity was estimated. RESULTS A total of 489 clones were analyzed (mean, 40.7 ± 8.0 clones per sample). Seventy phylotypes were identified of which six were novel phylotypes belonging to the family Ruminococcaceae. The mean number of taxa per canal was 10.0, ranging from 3 to 21 per sample; 65.7% of the cloned sequences represented phylotypes for which no cultivated isolates have been reported. The most prevalent taxa were Atopobium rimae (50.0%), Dialister invisus, Prevotella oris, Pseudoramibacter alactolyticus, and Tannerella forsythia (33.3%). CONCLUSIONS Although several key species predominate in endodontic samples of asymptomatic cases with periapical lesions, the primary endodontic infection is characterized by a wide bacterial diversity, which is mostly represented by members of the phylum Firmicutes belonging to the class Clostridia followed by the phylum Bacteroidetes.
Collapse
Affiliation(s)
- Adriana C Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Genome sequencing has revolutionized our view of the relationships among genomes, particularly in revealing the confounding effects of lateral genetic transfer (LGT). Phylogenomic techniques have been used to construct purported trees of microbial life. Although such trees are easily interpreted and allow the use of a subset of genomes as "proxies" for the full set, LGT and other phenomena impact the positioning of different groups in genome trees, confounding and potentially invalidating attempts to construct a phylogeny-based taxonomy of microorganisms. Network and graph approaches can reveal complex sets of relationships, but applying these techniques to large data sets is a significant challenge. Notwithstanding the question of what exactly it might represent, generating and interpreting a Tree or Network of All Genomes will only be feasible if current algorithms can be improved upon. RESULTS Complex relationships among even the most-similar genomes demonstrate that proxy-based approaches to simplifying large sets of genomes are not alone sufficient to solve the analysis problem. A phylogenomic analysis of 1173 sequenced bacterial and archaeal genomes generated phylogenetic trees for 159,905 distinct homologous gene sets. The relationships inferred from this set can be heavily dependent on the inclusion of other taxa: for example, phyla such as Spirochaetes, Proteobacteria and Firmicutes are recovered as cohesive groups or split depending on the presence of other specific lineages. Furthermore, named groups such as Acidithiobacillus, Coprothermobacter and Brachyspira show a multitude of affiliations that are more consistent with their ecology than with small subunit ribosomal DNA-based taxonomy. Network and graph representations can illustrate the multitude of conflicting affinities, but all methods impose constraints on the input data and create challenges of construction and interpretation. CONCLUSIONS These complex relationships highlight the need for an inclusive approach to genomic data, and current methods with minor alterations will likely scale to allow the analysis of data sets with 10,000 or more genomes. The main challenges lie in the visualization and interpretation of genomic relationships, and the redefinition of microbial taxonomy when subsets of genomic data are so evidently in conflict with one another, and with the "canonical" molecular taxonomy.
Collapse
Affiliation(s)
- Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 1W5 Canada.
| |
Collapse
|
41
|
Rincón B, Portillo MDC, González JM, Fernández-Cegrí V, De La Rubia MÁ, Borja R. Feasibility of sunflower oil cake degradation with three different anaerobic consortia. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:1409-16. [PMID: 21942394 DOI: 10.1080/10934529.2011.607032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sunflower oil cake (SuOC) is the solid by-product from the sunflower oil extraction process and an important pollutant waste because of its high organic content. For the anaerobic digestion of SuOC three different industrial reactors were compared as inoculum sources. This was done using a biochemical methane production (BMP) test. Inoculum I was a granular biomass from an industrial reactor treating soft-drink wastewaters. Inoculum II was a flocculent biomass from a full-scale reactor treating biosolids generated in an urban wastewater treatment plant. Inoculum III was a granular biomass from an industrial reactor treating brewery wastes. The highest kinetic constant for methane production was achieved using inoculum II. The inoculum sources were analyzed through PCR amplification of 16S rRNA genes and fingerprinting before (t = 0) and after the BMP test (t = 12 days). No significant differences were found in the bacterial community fingerprints between the beginning and the end of the experiments. The bacterial and archaeal communities of inoculum II were further analyzed. The main bacteria found in this inoculum belong to Alphaproteobacteria and Chloroflexi. Of the Archaea detected, Methanomicrobiales and Methanosarcinales made up practically the whole archaeal community. The results showed the importance of selecting an appropriate inoculum in short term processes due to the fact that the major microbial constituents in the initial consortia remained stable throughout anaerobic digestion.
Collapse
|