1
|
Natalicchio M, Birgel D, Dela Pierre F, Ziegenbalg S, Hoffmann-Sell L, Gier S, Peckmann J. Messinian bottom-grown selenitic gypsum: An archive of microbial life. GEOBIOLOGY 2022; 20:3-21. [PMID: 34296807 DOI: 10.1111/gbi.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Primary gypsum deposits, which accumulated in the Mediterranean Basin during the so-called Messinian salinity crisis (5.97-5.33 Ma), represent an excellent archive of microbial life. We investigated the molecular fossil inventory and the corresponding compound-specific δ13 C values of bottom-grown gypsum formed during the first stage of the crisis in four marginal basins across the Mediterranean (Nijar, Spain; Vena del Gesso, Italy; Heraklion, Crete; and Psematismenos, Cyprus). All studied gypsum samples contain intricate networks of filamentous microfossils, whose phylogenetic affiliation has been debated for a long time. Petrographic analysis, molecular fossil inventories (hydrocarbons, alcohols, and carboxylic acids), and carbon stable isotope patterns suggest that the mazes of filamentous fossils represent benthic microbial assemblages dominated by chemotrophic sulfide-oxidizing bacteria; in some of the samples, the body fossils are accompanied by lipids produced by sulfate-reducing bacteria. Abundant isoprenoid alcohols including diphytanyl glycerol diethers (DGDs) and glycerol dibiphytanyl glycerol tetraethers (GDGTs), typified by highly variable carbon stable isotope composition with δ13 C values spanning from -40 to -14‰, reveal the presence of planktic and benthic archaeal communities dwelling in Messinian paleoenvironments. The compound inventory of archaeal lipids indicates the existence of a stratified water column, with a normal marine to diluted upper water column and more saline deeper waters. This study documents the lipid biomarker inventory of microbial life preserved in ancient gypsum deposits, helping to reconstruct the widely debated conditions under which Messinian gypsum formed.
Collapse
Affiliation(s)
- Marcello Natalicchio
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| | - Daniel Birgel
- Institut für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany
| | - Francesco Dela Pierre
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| | | | | | - Susanne Gier
- Institut für Geologie, Universität Wien, Wien, Austria
| | - Jörn Peckmann
- Institut für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Zhang CJ, Chen YL, Sun YH, Pan J, Cai MW, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:252-262. [PMID: 37073347 PMCID: PMC10077227 DOI: 10.1007/s42995-020-00081-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Mangroves comprise a globally significant intertidal ecosystem that contains a high diversity of microorganisms, including fungi, bacteria and archaea. Archaea is a major domain of life that plays important roles in biogeochemical cycles in these ecosystems. In this review, the potential roles of archaea in mangroves are briefly highlighted. Then, the diversity and metabolism of archaeal community of mangrove ecosystems across the world are summarized and Bathyarchaeota, Euryarchaeota, Thaumarchaeota, Woesearchaeota, and Lokiarchaeota are confirmed as the most abundant and ubiquitous archaeal groups. The metabolic potential of these archaeal groups indicates their important ecological function in carbon, nitrogen and sulfur cycling. Finally, some cultivation strategies that could be applied to uncultivated archaeal lineages from mangrove wetlands are suggested, including refinements to traditional cultivation methods based on genomic and transcriptomic information, and numerous innovative cultivation techniques such as single-cell isolation and high-throughput culturing (HTC). These cultivation strategies provide more opportunities to obtain previously uncultured archaea.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yu-Lian Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yi-Hua Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Ming-Wei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
3
|
Molecular characterization of bacteria and archaea in a bioaugmented zero-water exchange shrimp pond. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn the zero-water exchange shrimp culture pond maintained with the application of indigenous bioaugmentor, low levels of total ammonia–nitrogen were reported, indicating the relevance of indigenous microbial communities. Sediments (0–5 cm layer) were sampled from the pond (85th day) and the bacterial and archaeal communities; specifically, the ammonia oxidizers (ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and anaerobic ammonia-oxidizing bacteria) in the sediment metagenome of the pond were analysed using the 16S rRNA and functional genes. Bacterial and archaeal 16S rRNA genes showed the relative abundance of Delta-Proteobacteria and Bacteroidetes groups performing sulphur respiration and organic matter degradation, archaeal groups of anaerobic sulphur respiring Crenarchaeotae, and chemolithoautotrophic ammonia oxidizers belonging to Thaumarchaeota. The presence of these diverse bacterial and archaeal communities denotes their significant roles in the cycling the carbon, nitrogen, and sulphur thereby bringing out efficient bioremediation in the bioaugmented zero-water exchange shrimp culture pond. Similarly, the functional gene-specific study showed the predominance of Nitrosomonas sp. (ammonia-oxidizing bacteria), Nitrosopumilus maritimus (ammonia-oxidizing archaea), and Candidatus Kuenenia (anaerobic ammonia-oxidizing bacteria) in the system, which points to their importance in the removal of accumulated ammonia. Thus, this study paves the way for understanding the microbial communities, specifically the ammonia oxidizers responsible for maintaining healthy and optimal environmental conditions in the bioaugmented zero-water exchange shrimp culture pond.
Collapse
|
4
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Kato S, Nakano S, Kouduka M, Hirai M, Suzuki K, Itoh T, Ohkuma M, Suzuki Y. Metabolic Potential of As-yet-uncultured Archaeal Lineages of Candidatus Hydrothermarchaeota Thriving in Deep-sea Metal Sulfide Deposits. Microbes Environ 2019; 34:293-303. [PMID: 31378759 PMCID: PMC6759336 DOI: 10.1264/jsme2.me19021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Candidatus Hydrothermarchaeota, formally called Marine Benthic Group E, has often been detected in iron- and sulfur-rich marine environments, such as hydrothermal vents and cold seeps. However, their ecology and physiology remain unclear. Cultivated representatives of this group are still lacking and only several metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs) are available from two deep-sea hydrothermal areas, the Juan de Fuca Ridge (JdFR) and Guaymas Basin (GB), in the north-east Pacific. We herein report four MAGs of Ca. Hydrothermarchaeota recovered from hydrothermally-inactive metal sulfide deposits at the Southern Mariana Trough (SMT) in the north-west Pacific. A phylogenetic analysis indicated that the MAGs of the SMT were distinct from those of the JdFR and GB at the genus or potentially family level. Ca. Hydrothermarchaeota MAGs from the SMT commonly possessed putative genes for carboxydotrophic and hydrogenotrophic respiration using oxidized chemical species of sulfur as electron acceptors and also for carbon fixation, as reported previously in MAGs/SAGs from the JdFR and GB. This result strongly supports Ca. Hydrothermarchaeota containing anaerobic chemolithoautotrophs using carbon monoxide and/or hydrogen as electron donors. A comparative genome analysis highlighted differences in the capability of nitrogen fixation between MAGs from the SMT and the other fields, which are consistent with environmental differences in the availability of nitrogen sources for assimilation between the fields. Based on the wide distribution in various areas, abundance, and metabolic potential of Ca. Hydrothermarchaeota, they may play a role in the biogeochemical cycling of carbon, nitrogen, sulfur, and iron in marine environments, particularly in deep-sea hydrothermal fields.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Yokosuka, Kanagawa, 237–0061Japan
| | - Shinsaku Nakano
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| | - Mariko Kouduka
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTECYokosuka, Kanagawa, 237–0061Japan
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Yokosuka, Kanagawa, 237–0061Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
| | - Yohey Suzuki
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| |
Collapse
|
6
|
Vipindas PV, Jabir T, Jasmin C, Balu T, Rehitha TV, Adarsh BM, Nair S, Abdulla MH, Abdulaziz A. Diversity and seasonal distribution of ammonia-oxidizing archaea in the water column of a tropical estuary along the southeast Arabian Sea. World J Microbiol Biotechnol 2018; 34:188. [PMID: 30511184 DOI: 10.1007/s11274-018-2570-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Diversity and distribution pattern of ammonia-oxidizing archaea (AOA) were studied across a salinity gradient in the water column of Cochin Estuary (CE), a tropical monsoonal estuary along the southeast Arabian Sea. The water column of CE was found to be nutrient rich with high bacterial (3.7-6.7 × 108 cells L-1) and archaeal abundance (1.9-4.5 × 108 cells L-1). Diversity and seasonal variation in the distribution pattern of AOA were studied using clone library analysis and Denaturing gradient gel electrophoresis (DGGE). Clone library analysis of both the amoA and 16S rRNA gene sequences showed similar diversity pattern, however the diversity was more clear when the 16S rRNA gene sequences were analyzed. More than 70% of the sequences retrieved were clustered under uncultured Thaumarchaeota group 1 lineage and the major fractions of the remaining sequences were grouped into the Nitrosopumilus lineage and Nitrosopelagicus lineage. The AOA community in the CE was less adaptable to changing environmental conditions and its distribution showed seasonal variations within the DGGE banding pattern with higher diversity during the pre-monsoon period. The distribution of AOA also showed its preference to intermediate salinity for their higher diversity. Summer monsoon associated runoff and flushing played a critical role in regulating the seasonality of AOA distribution.
Collapse
Affiliation(s)
- Puthiya Veettil Vipindas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, Kerala, 682016, India. .,Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India.
| | - Thajudeen Jabir
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Chekidhenkuzhiyil Jasmin
- Council of Scientific and Industrial Research (CSIR) - National Institute of Oceanography, Regional Centre, Cochin, Kerala, 682018, India
| | - Tharakan Balu
- Council of Scientific and Industrial Research (CSIR) - National Institute of Oceanography, Regional Centre, Cochin, Kerala, 682018, India
| | - Thekkendavida Velloth Rehitha
- Council of Scientific and Industrial Research (CSIR) - National Institute of Oceanography, Regional Centre, Cochin, Kerala, 682018, India
| | - Balakrishnan Meenakshikutty Adarsh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Shanta Nair
- Council of Scientific and Industrial Research (CSIR) - National Institute of Oceanography, Regional Centre, Cochin, Kerala, 682018, India
| | - Mohamed Hatha Abdulla
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Anas Abdulaziz
- Council of Scientific and Industrial Research (CSIR) - National Institute of Oceanography, Regional Centre, Cochin, Kerala, 682018, India
| |
Collapse
|
7
|
Liu X, Pan J, Liu Y, Li M, Gu JD. Diversity and distribution of Archaea in global estuarine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:349-358. [PMID: 29753224 DOI: 10.1016/j.scitotenv.2018.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 05/12/2023]
Abstract
Estuarine ecosystem is a unique geographical transitional zone between freshwater and seawater, harboring a wide range of microbial communities including Archaea. Although a large number of Archaea have been detected in such ecosystem, the global patterns in archaeal diversity and distribution are extremely scarce. To bridge this gap, we carried out a comprehensive survey of archaeal communities using ca. 4000 publicly available archaeal 16S rRNA gene sequences (>300 bp) collected from 24 estuaries in different latitude regions. These sequences were divided into 1450 operational taxonomic units (OTUs) at 97% identity, suggesting a high biodiversity that increased gradually from the high- to low-latitude estuaries. Phylogenetic analysis showed that estuarine ecosystem was a large biodiversity pool of Archaea that was mainly composed of 12 phyla. Among them, the predominant groups were Bathyarchaeota, Euryarchaeota and Thaumarchaeota. Interestingly, archaeal distribution demonstrated a geographical differentiation in that Thaumarchaeota was dominated in the low-latitude estuaries, Bathyarchaeota in the mid-latitude estuaries, and Euryarchaeota in the high-latitude estuaries, respectively. Furthermore, the majority of the most abundant 20 OTUs demonstrated an overrepresented or underrepresented distribution pattern in some specific estuaries or latitude regions while a few were evenly distributed throughout the estuaries. This pattern indicates a potential selectivity of geographical distribution. In addition, the analysis of environmental parameters suggested that latitude would be one of the major factors driving the distribution of archaeal communities in estuarine ecosystem. This study profiles a clear framework on the diversity and distribution of Archaea in the global estuarine ecosystem and explores the general environmental factors that influence these patterns. Our findings constitute an important part of the exploration of the global ecology of Archaea.
Collapse
Affiliation(s)
- Xiaobo Liu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, People's Republic of China.
| |
Collapse
|
8
|
Successive transitory distribution of Thaumarchaeota and partitioned distribution of Bathyarchaeota from the Pearl River estuary to the northern South China Sea. Appl Microbiol Biotechnol 2018; 102:8035-8048. [PMID: 29946932 DOI: 10.1007/s00253-018-9147-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/05/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
Abstract
Thaumarchaeota and Bathyarchaeota (formerly named Miscellaneous Crenarchaeotal Group, MCG) are globally occurring archaea playing potential roles in nitrogen and carbon cycling, especially in marine benthic biogeochemical cycle. Information on their distributional and compositional patterns could provide critical clues to further delineate their physiological and biochemical characteristics. Profiles of thaumarchaeotal and the total archaeal community in the northern South China Sea surface sediments revealed a successively transitional pattern of Thaumarchaeota composition using MiSeq sequencing. Shallow-sea sediment enriched phylotypes decreased gradually along the slope from estuarine and coastal marine region to the deep-sea, while deep-sea sediment enriched phylotypes showed a trend of increasing. Proportion of Thaumarchaeota within the total archaea increased with seawater depth. Phylotypes enriched in shallow- and deep-sea sediments were affiliated to OTUs originated from similar niches, suggesting that physiological adaption not geographical distance shaped the distribution of Thaumarchaeota lineages. Quantitative PCR also depicted a successive decrease of thaumarchaeotal 16S rRNA gene abundance from the highest at shallow-sea sites E708S and E709S (2.57 × 106 and 2.73 × 106 gene copies/g of dry sediment) to the lowest at deep-sea sites E525S and E407S (1.97 × 106 and 2.14 × 106 gene copies/g of dry sediment). Both of the abundance fractions of Bathyarchaeota subgroups (including subgroups 1, 6, 8, 10, 13, 15, 17, and ungrouped Bathyarchaeota) and the total Bathyarchaeota in the total archaea showed a negative distribution to seawater depth. Partitioned distribution of Bathyarchaeota fraction in the total archaea is documented for the first time in this study, and the shallow- and deep-sea Bathyarchaeota could account for 17.8 and 0.8%, respectively, on average. Subgroups 6 and 8, enriched subgroups in shallow-sea sediments, largely explained this partitioned distribution pattern according to seawater depth. Their prevalence in shallow-sea and suboxic estuarine sediments rather than deep-sea sediments hints that their metabolic properties of carbon metabolism are adapted to carbon substrates in these environments.
Collapse
|
9
|
Kataoka T, Suzuki K, Irino T, Yamamoto M, Higashi S, Liu H. Phylogenetic diversity and distribution of bacterial and archaeal amoA genes in the East China Sea during spring. Arch Microbiol 2017; 200:329-342. [PMID: 29143851 DOI: 10.1007/s00203-017-1442-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Microbial nitrification is a key process in the nitrogen cycle in the continental shelf ecosystems. The genotype compositions and abundance of the ammonia monooxygenase gene, amoA, derived from ammonia-oxidizing archaea (AOA) and bacteria (AOB) in two size fractions (2-10 and 0.2-2 µm), were investigated in the East China Sea (ECS) in May 2008 using PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR). Four sites were selected across the continental shelf edge: continental shelf water (CSW), Kuroshio branch water (KBW), transition between CSW and KBW (TCSKB) and coastal KBW (CKBW). The gene copy numbers of AOA-amoA were higher than those of AOB-amoA in ECS. The relative abundance of amoA to the total 16S rRNA gene level reached approximately 15% in KBW and CKBW for the free-living fraction of AOA, whereas the level was less than 0.01% throughout ECS for the AOB. A cluster analysis of the AOA-amoA-DGGE band pattern showed distinct genotype compositions in CSW in both the size fractions and in the surface of the TCSKB and KBW. Sequences of the DGGE bands were assigned to two clades. One of the clades exclusively consisted of sequences derived from the 2-10-µm fraction. This study revealed that AOA-amoA abundance dominated over AOB-amoA throughout the ECS, whereas the genotype composition of AOA-amoA were distributed heterogeneously across the water masses. Additionally, this is the first report showing the distribution of AOA-amoA genotypes characteristic to particle-associated AOA in the offshore of the East China Sea.
Collapse
Affiliation(s)
- Takafumi Kataoka
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong. .,Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan. .,Faculty of Marine Science and Technology, Fukui Prefectural University, Gakuen-cho 1-1, Obama, 917-0003, Japan.
| | - Koji Suzuki
- Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Tomohisa Irino
- Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Masanobu Yamamoto
- Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Seigo Higashi
- Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Hongbin Liu
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong
| |
Collapse
|
10
|
Jessen GL, Lichtschlag A, Struck U, Boetius A. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150-170 m Water Depth, Crimea Margin). Front Microbiol 2016; 7:1011. [PMID: 27446049 PMCID: PMC4925705 DOI: 10.3389/fmicb.2016.01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150-170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km(2) on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25-55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria which are adapted to exploit steep gradients in oxygen and sulfide availability; in addition to a specific seafloor topography which may relate to internal waves at the shelf break.
Collapse
Affiliation(s)
- Gerdhard L Jessen
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Anna Lichtschlag
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Ulrich Struck
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung Berlin, Germany
| | - Antje Boetius
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Alfred Wegener Institute, Helmholtz Center for Polar and Marine ResearchBremerhaven, Germany
| |
Collapse
|
11
|
Temporal-spatial variation of bacterial diversity in estuary sediments in the south of Zhejiang Province, China. Appl Microbiol Biotechnol 2015; 100:2817-28. [PMID: 26572519 DOI: 10.1007/s00253-015-7103-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 10/24/2022]
Abstract
The winter and summer microbial community structure in sediment samples obtained from the estuaries of the wastewater-polluted River Ou (DO and XO), River Feiyun (DF and XF), and River Ao (DA and XA) in the south of Zhejiang Province in China was determined using 454 pyrosequencing. Sediment samples (DD and XD) were also correspondingly collected near the shore far from the estuaries for comparison. For the above sediments, 294,870 effective sequences were obtained to do the bacterial diversity and abundance determination. In total, 1924, 1517, 2071, 1956, 1995, 1800, 2261, and 2097 operational taxonomic units were obtained at 3 % distance cutoff in the DO, XO, DF, XF, DA, XA, DD, and XD sediments, respectively. Bacterial phylotype richness in DD was higher than the other sediments, and XO had the least richness. The most dominant class in the DA, DD, DF, DO, and XA sediments is Gammaproteobacteria. Deltaproteobacteria is the most dominant one in XD, XO, and XF. Circa 14.4 % sequences in XD were found to be affiliated with the Flavobacteriales order. Characterization of the estuarine sediment bacterial communities indicated that chemical pollution has the potential to decrease the natural variability that exists among estuary ecosystems. However, chemical pollutants did not cause clear bio-homogenization in these estuaries.
Collapse
|
12
|
Hugoni M, Agogué H, Taib N, Domaizon I, Moné A, Galand PE, Bronner G, Debroas D, Mary I. Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea. MICROBIAL ECOLOGY 2015; 70:473-83. [PMID: 25851445 DOI: 10.1007/s00248-015-0601-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/18/2015] [Indexed: 05/15/2023]
Abstract
To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December-March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April-August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies.
Collapse
Affiliation(s)
- Mylène Hugoni
- Laboratoire "Microorganismes: Génome et Environnement", Clermont Université, Université Blaise Pascal, BP 10448, 63000, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Webster G, O'Sullivan LA, Meng Y, Williams AS, Sass AM, Watkins AJ, Parkes RJ, Weightman AJ. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol Ecol 2014; 91:1-18. [PMID: 25764553 PMCID: PMC4399439 DOI: 10.1093/femsec/fiu025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2-8 × 10(7) 16S rRNA gene copies cm(-3)) than the high-salinity marine sites from BR and AR (2 × 10(4)-2 × 10(7) and 4 × 10(6)-2 × 10(7) 16S rRNA gene copies cm(-3), respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the 'Bathyarchaeota' (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only 'marine' group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments.
Collapse
Affiliation(s)
- Gordon Webster
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Louise A O'Sullivan
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Yiyu Meng
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Angharad S Williams
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Andrea M Sass
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Andrew J Watkins
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - R John Parkes
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Andrew J Weightman
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| |
Collapse
|
14
|
Li Q, Wang F, Chen Z, Yin X, Xiao X. Stratified active archaeal communities in the sediments of Jiulong River estuary, China. Front Microbiol 2012; 3:311. [PMID: 22969752 PMCID: PMC3430981 DOI: 10.3389/fmicb.2012.00311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 08/07/2012] [Indexed: 11/13/2022] Open
Abstract
Here the composition of total and active archaeal communities in a sediment core of Jiulong River estuary at Fujian Province, Southern China was reported. Profiles of CH4 and SO2−4 concentrations from the sediment core indicated the existence of a sulfate-methane transition zone (SMTZ) in which sulfate reduction-coupled anaerobic oxidation of methane (AOM) occurs. Accordingly, three sediment layers (16–18.5 cm, 71–73.5 cm, and 161–163.5 cm) from the 1.2 m sediment core were sectioned and named top, middle and bottom, respectively. Total DNA and RNA of each layer were extracted and used for clone libraries and sequence analysis of 16S rRNA genes, the reverse transcription (RT)-PCR products of 16S rRNA and methyl CoM reductase alpha subunit (mcrA) genes. Phylogenetic analysis indicated that archaeal communities of the three layers were dominated by the Miscellaneous Crenarchaeotal Group (MCG) whose ecological functions were still unknown. The MCG could be further divided into seven subgroups, named MCG-A, B, C, D, E, F, and G. MCG-A and MCG-G were the most active groups in the estuarine sediments. Known anaerobic methanotrophic archaea (ANMEs) were only found as minor components in these estuarine archaeal communities. This study, together with the studies of deep subsurface sediments, would be a very good start point to target and compare the specific active archaeal groups and their roles in the dark, deep subsurface sediment environments.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology Shanghai, P.R. China
| | | | | | | | | |
Collapse
|
15
|
Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools. PLoS One 2012; 7:e42872. [PMID: 22916172 PMCID: PMC3423430 DOI: 10.1371/journal.pone.0042872] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/12/2012] [Indexed: 12/02/2022] Open
Abstract
The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.
Collapse
|
16
|
Roy Chowdhury A, Dutta C. A pursuit of lineage-specific and niche-specific proteome features in the world of archaea. BMC Genomics 2012; 13:236. [PMID: 22691113 PMCID: PMC3416665 DOI: 10.1186/1471-2164-13-236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022] Open
Abstract
Background Archaea evoke interest among researchers for two enigmatic characteristics –a combination of bacterial and eukaryotic components in their molecular architectures and an enormous diversity in their life-style and metabolic capabilities. Despite considerable research efforts, lineage- specific/niche-specific molecular features of the whole archaeal world are yet to be fully unveiled. The study offers the first large-scale in silico proteome analysis of all archaeal species of known genome sequences with a special emphasis on methanogenic and sulphur-metabolising archaea. Results Overall amino acid usage in archaea is dominated by GC-bias. But the environmental factors like oxygen requirement or thermal adaptation seem to play important roles in selection of residues with no GC-bias at the codon level. All methanogens, irrespective of their thermal/salt adaptation, show higher usage of Cys and have relatively acidic proteomes, while the proteomes of sulphur-metabolisers have higher aromaticity and more positive charges. Despite of exhibiting thermophilic life-style, korarchaeota possesses an acidic proteome. Among the distinct trends prevailing in COGs (Cluster of Orthologous Groups of proteins) distribution profiles, crenarchaeal organisms display higher intra-order variations in COGs repertoire, especially in the metabolic ones, as compared to euryarchaea. All methanogens are characterised by a presence of 22 exclusive COGs. Conclusions Divergences in amino acid usage, aromaticity/charge profiles and COG repertoire among methanogens and sulphur-metabolisers, aerobic and anaerobic archaea or korarchaeota and nanoarchaeota, as elucidated in the present study, point towards the presence of distinct molecular strategies for niche specialization in the archaeal world.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Structural Biology & Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
17
|
Mendes LW, Taketani RG, Navarrete AA, Tsai SM. Shifts in phylogenetic diversity of archaeal communities in mangrove sediments at different sites and depths in southeastern Brazil. Res Microbiol 2012; 163:366-77. [PMID: 22683855 DOI: 10.1016/j.resmic.2012.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/16/2012] [Indexed: 11/16/2022]
Abstract
This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes. Parameters such as pH, organic matter, potassium and magnesium presented significant correlation with general community structure. Furthermore, phylogenetic analysis revealed a community composition distributed differently according to depth where, in shallow samples, 74.3% of sequences were affiliated with Euryarchaeota and 25.7% were shared between Crenarchaeota and Thaumarchaeota, while for the deeper samples, 24.3% of the sequences were affiliated with Euryarchaeota and 75.7% with Crenarchaeota and Thaumarchaeota. Archaeal diversity measurements based on 16S rRNA gene clone libraries decreased with increasing depth and there was a greater difference between depths (<18% of sequences shared) than sites (>25% of sequences shared). Taken together, our findings indicate that mangrove ecosystems support a diverse archaeal community; it might possibly be involved in nutrient cycles and are affected by sediment properties, depth and distinct locations.
Collapse
Affiliation(s)
- Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Av Centenario, 303 Piracicaba, SP, CEP 13400-970, Brazil.
| | | | | | | |
Collapse
|
18
|
Chang YH, Cheng TW, Lai WJ, Tsai WY, Sun CH, Lin LH, Wang PL. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan. Environ Microbiol 2011; 14:895-908. [DOI: 10.1111/j.1462-2920.2011.02658.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Cao H, Hong Y, Li M, Gu JD. Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea. Antonie van Leeuwenhoek 2011; 100:545-56. [PMID: 21717206 PMCID: PMC3190089 DOI: 10.1007/s10482-011-9610-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/10/2011] [Indexed: 11/26/2022]
Abstract
In the present study the diversity and abundance of nitrifying microbes including ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) were investigated, along with the physicochemical parameters potentially affecting them, in a transect of surface sediments from the coastal margin adjacent to the Pearl River estuary to the slope in the deep South China Sea. Nitrifying microbial diversity was determined by detecting the amoA (ammonia monooxygenase subunit A) gene. An obvious community structure shift for both AOA and beta-AOB from the coastal marginal areas to the slope in the deep-sea was detected, while the OTU numbers of AOA amoA were more stable than those of the beta-AOB. The OTUs of beta-AOB increased with the distance from the coastal margin areas to the slope in the deep-sea. Beta-AOB showed lower diversity with dominant strains in a polluted area but higher diversity without dominant strains in a clean area. Moreover, the diversity of beta-AOB was correlated with pH values, while no noticeable relationships were established between AOA and physicochemical parameters. Beta-AOB was more sensitive to transect environmental variability and might be a potential indicator for environmental changes. Additionally, the surface sediments surveyed in the South China Sea harboured diverse and distinct AOA and beta-AOB phylotypes different from other environments, suggesting the endemicity of some nitrifying prokaryotes in the South China Sea.
Collapse
Affiliation(s)
- Huiluo Cao
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 2011; 77:4618-25. [PMID: 21571885 DOI: 10.1128/aem.00136-11] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches.
Collapse
|