1
|
Fondi M, Pini F, Riccardi C, Gemo P, Brilli M. A new selective force driving metabolic gene clustering. mSystems 2024; 9:e0096024. [PMID: 39465945 PMCID: PMC11629862 DOI: 10.1128/msystems.00960-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
The evolution of operons has puzzled evolutionary biologists since their discovery, and many theories exist to explain their emergence, spreading, and evolutionary conservation. In this work, we suggest that DNA replication introduces a selective force for the clustering of functionally related genes on chromosomes, which we interpret as a preliminary and necessary step in operon formation. Our reasoning starts from the observation that DNA replication produces copy number variations of genomic regions, and we propose that such changes perturb metabolism. The formalization of this effect by exploiting concepts from metabolic control analysis suggests that the minimization of such perturbations during evolution could be achieved through the formation of gene clusters and operons. We support our theoretical derivations with simulations based on a realistic metabolic network, and we confirm that present-day genomes have a degree of compaction of functionally related genes, which is significantly correlated to the proposed perturbations introduced by replication. The formation of clusters of functionally related genes in microbial genomes has puzzled microbiologists since their first discovery. Here, we suggest that replication, and the copy number variations due to the replisome passage, might play a role in the process through a perturbation in metabolite homeostasis. We provide theoretical support to this hypothesis, and we found that both simulations and genomic analysis support our hypothesis. IMPORTANCE The formation of clusters of functionally related genes in microbial genomes has puzzled microbiologists since their discovery. Here, we suggest that replication, and the copy number variations due to the replisome passage, might play a role in the process through a perturbation in metabolite homeostasis. We provide theoretical support to this hypothesis, and we found that both simulations and genomic analysis support our hypothesis.
Collapse
Affiliation(s)
- Marco Fondi
- Department of Biology,
University of Florence,
Florence, Italy
| | - Francesco Pini
- Department of
Biosciences, Biotechnology and Environment (DBBA), University of Bari
Aldo Moro, Bari,
Italy
| | | | - Pietro Gemo
- Department of
Biosciences, University of Milan,
Milan, Italy
| | - Matteo Brilli
- Department of
Biosciences, University of Milan,
Milan, Italy
| |
Collapse
|
2
|
Norris V. Hunting the Cell Cycle Snark. Life (Basel) 2024; 14:1213. [PMID: 39459514 PMCID: PMC11509034 DOI: 10.3390/life14101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
In this very personal hunt for the meaning of the bacterial cell cycle, the snark, I briefly revisit and update some of the mechanisms we and many others have proposed to regulate the bacterial cell cycle. These mechanisms, which include the dynamics of calcium, membranes, hyperstructures, and networks, are based on physical and physico-chemical concepts such as ion condensation, phase transition, crowding, liquid crystal immiscibility, collective vibrational modes, reptation, and water availability. I draw on ideas from subjects such as the 'prebiotic ecology' and phenotypic diversity to help with the hunt. Given the fundamental nature of the snark, I would expect that its capture would make sense of other parts of biology. The route, therefore, followed by the hunt has involved trying to answer questions like "why do cells replicate their DNA?", "why is DNA replication semi-conservative?", "why is DNA a double helix?", "why do cells divide?", "is cell division a spandrel?", and "how are catabolism and anabolism balanced?". Here, I propose some relatively unexplored, experimental approaches to testing snark-related hypotheses and, finally, I propose some possibly original ideas about DNA packing, about phase separations, and about computing with populations of virtual bacteria.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| |
Collapse
|
3
|
Iasakov T. Evolution End Classification of tfd Gene Clusters Mediating Bacterial Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Int J Mol Sci 2023; 24:14370. [PMID: 37762674 PMCID: PMC10531765 DOI: 10.3390/ijms241814370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The tfd (tfdI and tfdII) are gene clusters originally discovered in plasmid pJP4 which are involved in the bacterial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) via the ortho-cleavage pathway of chlorinated catechols. They share this activity, with respect to substituted catechols, with clusters tcb and clc. Although great effort has been devoted over nearly forty years to exploring the structural diversity of these clusters, their evolution has been poorly resolved to date, and their classification is clearly obsolete. Employing comparative genomic and phylogenetic approaches has revealed that all tfd clusters can be classified as one of four different types. The following four-type classification and new nomenclature are proposed: tfdI, tfdII, tfdIII and tfdIV(A,B,C). Horizontal gene transfer between Burkholderiales and Sphingomonadales provides phenomenal linkage between tfdI, tfdII, tfdIII and tfdIV type clusters and their mosaic nature. It is hypothesized that the evolution of tfd gene clusters proceeded within first (tcb, clc and tfdI), second (tfdII and tfdIII) and third (tfdIV(A,B,C)) evolutionary lineages, in each of which, the genes were clustered in specific combinations. Their clustering is discussed through the prism of hot spots and driving forces of various models, theories, and hypotheses of cluster and operon formation. Two hypotheses about series of gene deletions and displacements are also proposed to explain the structural variations across members of clusters tfdII and tfdIII, respectively. Taking everything into account, these findings reconstruct the phylogeny of tfd clusters, have delineated their evolutionary trajectories, and allow the contribution of various evolutionary processes to be assessed.
Collapse
Affiliation(s)
- Timur Iasakov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
4
|
Del Duca S, Semenzato G, Esposito A, Liò P, Fani R. The Operon as a Conundrum of Gene Dynamics and Biochemical Constraints: What We Have Learned from Histidine Biosynthesis. Genes (Basel) 2023; 14:genes14040949. [PMID: 37107707 PMCID: PMC10138114 DOI: 10.3390/genes14040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Operons represent one of the leading strategies of gene organization in prokaryotes, having a crucial influence on the regulation of gene expression and on bacterial chromosome organization. However, there is no consensus yet on why, how, and when operons are formed and conserved, and many different theories have been proposed. Histidine biosynthesis is a highly studied metabolic pathway, and many of the models suggested to explain operons origin and evolution can be applied to the histidine pathway, making this route an attractive model for the study of operon evolution. Indeed, the organization of his genes in operons can be due to a progressive clustering of biosynthetic genes during evolution, coupled with a horizontal transfer of these gene clusters. The necessity of physical interactions among the His enzymes could also have had a role in favoring gene closeness, of particular importance in extreme environmental conditions. In addition, the presence in this pathway of paralogous genes, heterodimeric enzymes and complex regulatory networks also support other operon evolution hypotheses. It is possible that histidine biosynthesis, and in general all bacterial operons, may result from a mixture of several models, being shaped by different forces and mechanisms during evolution.
Collapse
Affiliation(s)
- Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Lanciola 12/A, Cascine del Riccio, 50125 Firenze, Italy
| | - Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Lanciola 12/A, Cascine del Riccio, 50125 Firenze, Italy
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Kanai Y, Tsuru S, Furusawa C. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1673-1686. [PMID: 35066585 PMCID: PMC8860574 DOI: 10.1093/nar/gkac004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
Abstract
Operons are a hallmark of the genomic and regulatory architecture of prokaryotes. However, the mechanism by which two genes placed far apart gradually come close and form operons remains to be elucidated. Here, we propose a new model of the origin of operons: Mobile genetic elements called insertion sequences can facilitate the formation of operons by consecutive insertion–deletion–excision reactions. This mechanism barely leaves traces of insertion sequences and thus difficult to detect in nature. In this study, as a proof-of-concept, we reproducibly demonstrated operon formation in the laboratory. The insertion sequence IS3 and the insertion sequence excision enhancer are genes found in a broad range of bacterial species. We introduced these genes into insertion sequence-less Escherichia coli and found that, supporting our hypothesis, the activity of the two genes altered the expression of genes surrounding IS3, closed a 2.7 kb gap between a pair of genes, and formed new operons. This study shows how insertion sequences can facilitate the rapid formation of operons through locally increasing the structural mutation rates and highlights how coevolution with mobile elements may shape the organization of prokaryotic genomes and gene regulation.
Collapse
Affiliation(s)
- Yuki Kanai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saburo Tsuru
- To whom correspondence should be addressed. Tel: +81 3 5841 4229; Fax: +81 3 5841 4229;
| | | |
Collapse
|
7
|
Zimerman GR, Svetlitsky D, Zehavi M, Ziv-Ukelson M. Approximate search for known gene clusters in new genomes using PQ-trees. Algorithms Mol Biol 2021; 16:16. [PMID: 34243815 PMCID: PMC8272295 DOI: 10.1186/s13015-021-00190-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gene clusters are groups of genes that are co-locally conserved across various genomes, not necessarily in the same order. Their discovery and analysis is valuable in tasks such as gene annotation and prediction of gene interactions, and in the study of genome organization and evolution. The discovery of conserved gene clusters in a given set of genomes is a well studied problem, but with the rapid sequencing of prokaryotic genomes a new problem is inspired. Namely, given an already known gene cluster that was discovered and studied in one genomic dataset, to identify all the instances of the gene cluster in a given new genomic sequence. Thus, we define a new problem in comparative genomics, denoted PQ-Tree Search that takes as input a PQ-tree T representing the known gene orders of a gene cluster of interest, a gene-to-gene substitution scoring function h, integer arguments \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_T$$\end{document}dT and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_S$$\end{document}dS, and a new sequence of genes S. The objective is to identify in S approximate new instances of the gene cluster; These instances could vary from the known gene orders by genome rearrangements that are constrained by T, by gene substitutions that are governed by h, and by gene deletions and insertions that are bounded from above by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_T$$\end{document}dT and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_S$$\end{document}dS, respectively. We prove that PQ-Tree Search is NP-hard and propose a parameterized algorithm that solves the optimization variant of PQ-Tree Search in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O^*(2^{\gamma })$$\end{document}O∗(2γ) time, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma$$\end{document}γ is the maximum degree of a node in T and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O^*$$\end{document}O∗ is used to hide factors polynomial in the input size. The algorithm is implemented as a search tool, denoted PQFinder, and applied to search for instances of chromosomal gene clusters in plasmids, within a dataset of 1,487 prokaryotic genomes. We report on 29 chromosomal gene clusters that are rearranged in plasmids, where the rearrangements are guided by the corresponding PQ-trees. One of these results, coding for a heavy metal efflux pump, is further analysed to exemplify how PQFinder can be harnessed to reveal interesting new structural variants of known gene clusters.
Collapse
|
8
|
Kim JW, Bugata V, Cortés-Cortés G, Quevedo-Martínez G, Camps M. Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0026-2019. [PMID: 33210586 PMCID: PMC7724965 DOI: 10.1128/ecosalplus.esp-0026-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with ori function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.
Collapse
Affiliation(s)
- Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Vega Bugata
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Giselle Quevedo-Martínez
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
9
|
Zheng J, Guan Z, Cao S, Peng D, Ruan L, Jiang D, Sun M. Plasmids are vectors for redundant chromosomal genes in the Bacillus cereus group. BMC Genomics 2015; 16:6. [PMID: 25608745 PMCID: PMC4326196 DOI: 10.1186/s12864-014-1206-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/24/2014] [Indexed: 01/12/2023] Open
Abstract
Background Prokaryotic plasmids have played significant roles in the evolution of bacterial genomes and have a great impact on the metabolic functions of the host cell. Many bacterial strains contain multiple plasmids, but the relationships between bacterial plasmids and chromosomes are unclear. We focused on plasmids from the Bacillus cereus group because most strains contain several plasmids. Results We collected the genome sequences of 104 plasmids and 20 chromosomes from B. cereus group strains, and we studied the relationships between plasmids and chromosomes by focusing on the pan-genomes of these plasmids and chromosomes. In terms of basic features (base composition and codon usage), the genes on plasmids were more similar to the chromosomal variable genes (distributed genes and unique genes) than to the chromosomal core genes. Although all the functional categories of the chromosomal genes were exhibited by the plasmid genes, the proportions of each category differed between these two gene sets. The 598 gene families shared between chromosomes and plasmids displayed a uniform distribution between the two groups. A phylogenetic analysis of the shared genes, including the chromosomal core gene set, indicated that gene exchange events between plasmids and chromosomes occurred frequently during the evolutionary histories of the strains and species in this group. Moreover, the shared genes between plasmids and chromosomes usually had different promoter and terminator sequences, suggesting that they are regulated by different elements at the transcriptional level. Conclusions We speculate that for the entire B. cereus group, adaptive genes are preserved on both plasmids and chromosomes; however, in a single cell, homologous genes on plasmids and the chromosome are controlled by different regulators to reduce the burden of maintaining redundant genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1206-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ziyu Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiyun Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Maida I, Fondi M, Orlandini V, Emiliani G, Papaleo MC, Perrin E, Fani R. Origin, duplication and reshuffling of plasmid genes: Insights from Burkholderia vietnamiensis G4 genome. Genomics 2014; 103:229-38. [PMID: 24576463 DOI: 10.1016/j.ygeno.2014.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 01/14/2014] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
Abstract
Using a computational pipeline based on similarity networks reconstruction we analysed the 1133 genes of the Burkholderia vietnamiensis (Bv) G4 five plasmids, showing that gene and operon duplication played an important role in shaping the plasmid architecture. Several single/multiple duplications occurring at intra- and/or interplasmids level involving 253 paralogous genes (stand-alone, clustered or operons) were detected. An extensive gene/operon exchange between plasmids and chromosomes was also disclosed. The larger the plasmid, the higher the number and size of paralogous fragments. Many paralogs encoded mobile genetic elements and duplicated very recently, suggesting that the rearrangement of the Bv plastic genome is ongoing. Concerning the "molecular habitat" and the "taxonomical status" (the Preferential Organismal Sharing) of Bv plasmid genes, most of them have been exchanged with other plasmids of bacteria belonging (or phylogenetically very close) to Burkholderia, suggesting that taxonomical proximity of bacterial strains is a crucial issue in plasmid-mediated gene exchange.
Collapse
Affiliation(s)
- Isabel Maida
- Laboratory of Microbial and Molecular Evolution, Department of Biology, Via Madonna del Piano 6, University of Florence, I-50019 Sesto F.no, Firenze, Italy
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, Via Madonna del Piano 6, University of Florence, I-50019 Sesto F.no, Firenze, Italy
| | - Valerio Orlandini
- Laboratory of Microbial and Molecular Evolution, Department of Biology, Via Madonna del Piano 6, University of Florence, I-50019 Sesto F.no, Firenze, Italy
| | - Giovanni Emiliani
- Tree and Timber Institute, National Research Council, Via Madonna del Piano, 10 I-50019 Sesto F.no, Firenze, Italy
| | - Maria Cristiana Papaleo
- Laboratory of Microbial and Molecular Evolution, Department of Biology, Via Madonna del Piano 6, University of Florence, I-50019 Sesto F.no, Firenze, Italy
| | - Elena Perrin
- Laboratory of Microbial and Molecular Evolution, Department of Biology, Via Madonna del Piano 6, University of Florence, I-50019 Sesto F.no, Firenze, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, Via Madonna del Piano 6, University of Florence, I-50019 Sesto F.no, Firenze, Italy.
| |
Collapse
|
11
|
Hložková K, Suman J, Strnad H, Ruml T, Paces V, Kotrba P. Characterization of pbt genes conferring increased Pb2+ and Cd2+ tolerance upon Achromobacter xylosoxidans A8. Res Microbiol 2013; 164:1009-18. [PMID: 24125695 DOI: 10.1016/j.resmic.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
The cluster of pbtTFYRABC genes is carried by plasmid pA81. Its elimination from Achromobacter xylosoxidans A8 resulted in increased sensitivity towards Pb(2+) and Cd(2+). Predicted pbtTRABC products share strong similarities with Pb(2+) uptake transporter PbrT, transcriptional regulator PbrR, metal efflux P1-ATPases PbrA and CadA, undecaprenyl pyrophosphatase PbrB and its signal peptidase PbrC from Cupriavidus metallidurans CH34. Expression of pbtABC or pbtA in a metal-sensitive Escherichia coli GG48 rendered the strain Pb(2+)-, Cd(2+)- and Zn(2+)-tolerant and caused decreased accumulation of the metal ions. Accumulation of Pb(2+), but not of Cd(2+) or Zn(2+), was promoted in E. coli expressing pbtT. Additional genes of the pbt cluster are pbtF and pbtY, which encode the cation diffusion facilitator (CDF)-like transporter and a putative fatty acid hydroxylase of unknown function, respectively. Expression of pbtF did not confer increased metal tolerance upon E. coli GG48, although the protein showed measurable Pb(2+)-efflux activity. Unlike the pbtT promoter, promoters of pbtABC, pbtF and pbtY contain features characteristic of promoters controlled by metal-responsive transcriptional regulators of the MerR family. Upregulation of pbtABC, pbtF and pbtY upon Pb(2+), Cd(2+) and Zn(2+) exposure was confirmed in wild-type Achromobacter xylosoxidans A8. Gel shift assays proved binding of purified PbtR to the respective promoters.
Collapse
Affiliation(s)
- Kateřina Hložková
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, CZ-166 28 Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|