1
|
Li D, Huo C, Li G, Zhu M, Xu F, Qiao J, Sun H. The absence of luxS reduces the invasion of Avibacterium paragallinarum but is not essential for virulence. Front Vet Sci 2024; 11:1427966. [PMID: 39263678 PMCID: PMC11390136 DOI: 10.3389/fvets.2024.1427966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
The contagious respiratory pathogen, Avibacterium paragallinarum, contributes to infectious coryza in poultry. However, commercial vaccines have not shown perfect protection against infectious coryza. To search for an alternative approach, this research aimed to investigate whether the quorum-sensing system of pathogens plays a crucial role in their survival and pathogenicity. The LuxS/AI-2 quorum-sensing system in many Gram-negative and Gram-positive bacteria senses environmental changes to regulate physiological traits and virulent properties, and the role of the luxS gene in Av. paragallinarum remains unclear. To investigate the effect of the luxS gene in the quorum-sensing system of Av. paragallinarum, we constructed a luxS mutant. Bioluminescence analysis indicated that the luxS gene plays a vital role in the LuxS/AI-2 quorum-sensing system. The analysis of the LuxS/AI-2 system-related genes showed the level of pfs mRNA to be significantly increased in the mutant strain; however, lsrR, lsrK, and lsrB mRNA levels were not significantly different compared with the wild type. The ability of the luxS mutant strain to invade HD11 and DF-1 cells was significantly decreased compared with the wild-type strain. In addition, all chickens challenged with various doses of the luxS mutant strain developed infections and symptoms, and those challenged with the lowest dose exhibited only minor differences compared to chickens challenged with the wild-type strain. Thus, the deletion of the luxS gene reduces the invasion, but the luxS gene does not play an essential role in the pathogenesis of A. paragallinarum.
Collapse
Affiliation(s)
- Donghai Li
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Caiyun Huo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guiping Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Menghan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huiling Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Huang L, Guo R, Li S, Wu X, Zhang Y, Guo S, Lv Y, Xiao Z, Kang J, Meng J, Zhou P, Ma J, You W, Zhang Y, Yu H, Zhao J, Huang G, Duan Z, Yan Q, Sun W. A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome. Nat Microbiol 2024; 9:2185-2200. [PMID: 38907008 PMCID: PMC11306104 DOI: 10.1038/s41564-024-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/01/2024] [Indexed: 06/23/2024]
Abstract
The human vagina harbours diverse microorganisms-bacteria, viruses and fungi-with profound implications for women's health. Genome-level analysis of the vaginal microbiome across multiple kingdoms remains limited. Here we utilize metagenomic sequencing data and fungal cultivation to establish the Vaginal Microbial Genome Collection (VMGC), comprising 33,804 microbial genomes spanning 786 prokaryotic species, 11 fungal species and 4,263 viral operational taxonomic units. Notably, over 25% of prokaryotic species and 85% of viral operational taxonomic units remain uncultured. This collection significantly enriches genomic diversity, especially for prevalent vaginal pathogens such as BVAB1 (an uncultured bacterial vaginosis-associated bacterium) and Amygdalobacter spp. (BVAB2 and related species). Leveraging VMGC, we characterize functional traits of prokaryotes, notably Saccharofermentanales (an underexplored yet prevalent order), along with prokaryotic and eukaryotic viruses, offering insights into their niche adaptation and potential roles in the vagina. VMGC serves as a valuable resource for studying vaginal microbiota and its impact on vaginal health.
Collapse
Affiliation(s)
- Liansha Huang
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | | | - Shenghui Li
- Puensum Genetech Institute, Wuhan, China.
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Xiaoling Wu
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Shumin Guo
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Lv
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Xiao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Kang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Peng Zhou
- Department of Acupuncture, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei You
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hailong Yu
- Puensum Genetech Institute, Wuhan, China
| | - Jixin Zhao
- Puensum Genetech Institute, Wuhan, China
| | - Guangrong Huang
- Department of Gynecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zuzhen Duan
- Department of Gynecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Wen Sun
- Centre for Translational Medicine, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Qu X, Zhou J, Huang H, Wang W, Xiao Y, Tang B, Liu H, Xu C, Xiao X. Genomic Investigation of Proteus mirabilis Isolates Recovered From Pig Farms in Zhejiang Province, China. Front Microbiol 2022; 13:952982. [PMID: 35875581 PMCID: PMC9300985 DOI: 10.3389/fmicb.2022.952982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Proteus mirabilis is a common opportunistic zoonotic pathogen, and its ongoing acquisition of antimicrobial resistance genes poses challenges to clinical treatments. Human-sourced whole genomic sequencing of human P. mirabilis isolates has been reported, but pig-sourced isolates have not been thoroughly investigated even though these animals can serve as reservoirs for human infections. In the current study, we report a molecular epidemiological investigation to unravel the antimicrobial and virulence gene risk factors for P. mirabilis contamination in 9 pig farms in 3 different cities in Zhejiang Province, China. We collected 541 swab samples from healthy pigs and 30 were confirmed as P. mirabilis. All 30 isolates were resistant to tetracyclines, macrolides, sulfonamides, β-lactams and chloramphenicol, and all were multiple drug-resistant and 27 were strong biofilm formers. Phylogenetic analyses indicated these 30 isolates clustered together in 2 major groups. Whole genome sequencing demonstrated that the isolates possessed 91 different antimicrobial resistance genes belonging to 30 antimicrobial classes including rmtB, sul1, qnrS1, AAC(6′) − Ib − cr, blaCTX − M − 65 and blaOXA − 1. All isolates contained mobile genetic elements including integrative conjugative elements (ICEs) and integrative and mobilizable elements (IMEs). Minimum inhibitory concentration (MIC) testing indicated direct correlates between cognate genes and antimicrobial resistance. We also identified 95 virulence factors, almost all isolates contained 20 fimbrial and flagellar operons, and this represents the greatest number of these operon types found in a single species among all sequenced bacterial genomes. These genes regulate biofilm formation and represent a confounding variable for treating P. mirabilis infections. Our P. mirabilis isolates were present in healthy animals, and multiple drug resistance in these isolates may serve as a reservoir for other intestinal and environmental Enterobacteriaceae members. This prompts us to more strictly regulate veterinary antibiotic use.
Collapse
Affiliation(s)
- Xiaoyun Qu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haoqi Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanlin Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chenggang Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Chenggang Xu,
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xingning Xiao,
| |
Collapse
|
4
|
AI-2/LuxS Quorum Sensing System Promotes Biofilm Formation of Lactobacillus rhamnosus GG and Enhances the Resistance to Enterotoxigenic Escherichia coli in Germ-Free Zebrafish. Microbiol Spectr 2022; 10:e0061022. [PMID: 35700135 PMCID: PMC9430243 DOI: 10.1128/spectrum.00610-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The LuxS enzyme plays a key role in both quorum sensing (QS) and the regulation of bacterial growth. It catalyzes the production of autoinducer-2 (AI-2) signaling molecule, which is a component of the methyl cycle and methionine metabolism. This study aimed at investigating the differences between the Lactobacillus rhamnosus GG (LGG) wild-type strain (WT) and its luxS mutant (ΔluxS) during biofilm formation and when resisting to inflammation caused by Enterotoxigenic Escherichia coli (ETEC) in germ-free zebrafish. Our results suggest that in the absence of luxS when LGG was knocked out, biofilm formation, extracellular polysaccharide secretion and adhesion were all compromised. Addition of synthetic AI-2 indeed rescued, at least partially, the deficiencies observed in the mutant strain. The colonizing and immunomodulatory function in WT versus ΔluxS mutants were further studied in a germ-free zebrafish model. The concentration of AI-2 signaling molecules decreased sharply in zebrafish infected with the ΔluxS. At the same time, compared with the ΔluxS, the wild-type strain could colonize the germ-free zebrafish more effectively. Our transcriptome results suggest that genes involved in immunity, signal transduction, and cell adhesion were downregulated in zebrafish infected with ΔluxS and WT. In the WT, the immune system of germ-free zebrafish was activated more effectively through the MAPK and NF-κB pathway, and its ability to fight the infection against ETEC was increased. Together, our results demonstrate that the AI-2/LuxS system plays an important role in biofilm formation to improve LGG and alleviate inflammation caused by ETEC in germ-free zebrafish. IMPORTANCELactobacillus rhamnosus GG is a widely used probiotic to improve host intestinal health, promote growth, reduce diarrhea, and modulate immunity. In recent years, the bacterial quorum sensing system has attracted much attention; however, there has not been much research on the effect of the LuxS/AI-2 quorum sensing system of Lactobacillus on bacteriostasis, microbial ecology balance, and immune regulation in intestine. In this study, we used germ-free zebrafish as an animal model to compare the differences between wild-type and luxS mutant strains. We showed how AI-2/LuxS QS affects the release of AI-2 and how QS regulates the colonization, EPS synthesis and biofilm formation of LGG. This study provides an idea for the targeted regulation of animal intestinal health with probiotics by controlling bacteria quorum sensing system.
Collapse
|
5
|
Hu J, Lv X, Niu X, Yu F, Zuo J, Bao Y, Yin H, Huang C, Nawaz S, Zhou W, Jiang W, Chen Z, Tu J, Qi K, Han X. Effect of nutritional and environmental conditions on biofilm formation of avian pathogenic Escherichia coli. J Appl Microbiol 2022; 132:4236-4251. [PMID: 35343028 DOI: 10.1111/jam.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
AIMS To study the effects of environmental stress and nutrient conditions on biofilm formation of avian pathogenic Escherichia coli (APEC). METHODS AND RESULTS The APEC strain DE17 was used to study biofilm formation under various conditions of environmental stress (including different temperatures, pH, metal ions, and antibiotics) and nutrient conditions (LB and M9 media, with the addition of different carbohydrates, if necessary). The DE17 biofilm formation ability was strongest at 25°C in LB medium. Compared to incubation at 37°C, three biofilm-related genes (csgD, dgcC, and pfs) were significantly upregulated and two genes (flhC and flhD) were downregulated at 25°C, which resulted in decreased motility. However, biofilm formation was strongest in M9 medium supplemented with glucose at 37°C, and the number of live bacteria was the highest as determined by confocal laser scanning microscopy (CLSM). The bacteria in the biofilm were surrounded by a thick extracellular matrix, and honeycomb-like or rough surfaces were observed by scanning electron microscopy (SEM). Moreover, biofilm formation of the DE17 strain was remarkably inhibited under acidic conditions, whereas neutral and alkaline conditions were more suitable for biofilm formation. Biofilm formation was also inhibited at specific concentrations of cations (Na+ , K+ , Ca2+ , and Mg2+ ) and antibiotics (ampicillin, chloramphenicol, kanamycin, and spectinomycin). The qRT-PCR showed that the transcription levels of biofilm-related genes change under different environmental conditions. CONCLUSIONS Nutritional and environmental factors played an important role in DE17 biofilm development. The transcription levels of biofilm-related genes changed under different environmental and nutrient conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The findings suggest that nutritional and environmental factors play an important role in APEC biofilm development. Depending on the different conditions involved in this study, it can serve as a guide to treating biofilm-related infections and to eliminating biofilms from the environment.
Collapse
Affiliation(s)
- Jiangang Hu
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China.,Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaolong Lv
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiangpeng Niu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Fangheng Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiangan Han
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China.,Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| |
Collapse
|
6
|
Li X, Chen L, Zhou H, Gu S, Wu Y, Wang B, Zhang M, Ding N, Sun J, Pang X, Lu D. LsrB, the hub of ABC transporters involved in the membrane damage mechanisms of heavy ion irradiation in Escherichia coli. Int J Radiat Biol 2021; 97:1731-1740. [PMID: 34597255 DOI: 10.1080/09553002.2021.1987565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ionizing radiation, especially heavy ion (HI) beams, has been widely used in biology and medicine. However, the mechanism of membrane damage by such radiation remains primarily uncharacterized. PURPOSE Transcriptomic profiles of Escherichia coli (E. coli) treated with HI illustrated the response mechanisms of the membrane, mainly ABC transporters, related genes regulated by antibiotics treatment through enrichment analyses of GO and KEGG. The networks of protein-protein interactions indicated that LsrB was the crucial one among the ABC transporters specially regulated by HI through the calculation of plugins MCODE and cytoHubba of Cytoscape. Finally, the expression pattern, GO/KEGG enrichment terms, and the interaction between nine LuxS/AI-2 quorum sensing system members were investigated. CONCLUSIONS Above all, results suggested that HI might perform membrane damage through regulated material transport, inhibited LuxS/AI-2 system, finally impeded biofilm formation. This work provides further evidence for the role of ABC transporters, especially LsrB, in membrane damage of E. coli to HI. It will provide new strategies for improving the precise application of HI.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Microbial Resources Exploitation and Utilization, Luoyang, China.,National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Lei Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Haitao Zhou
- Neurology Department, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Bing Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiaju Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Antibiotic resistance related to biofilm formation in Streptococcus suis. Appl Microbiol Biotechnol 2020; 104:8649-8660. [PMID: 32897417 DOI: 10.1007/s00253-020-10873-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic agent, which seriously impacts the pig industry and human health in various countries. Biofilm formation is likely contributing to the virulence and drug resistance in S. suis. A better knowledge of biofilm formation as well as to biofilm-dependent drug resistance mechanisms in S. suis can be of great significance for the prevention and treatment of S. suis infections. This literature review updates the latest scientific data related to biofilm formation in S. suis and its impact on drug tolerance and resistance.Key points• Biofilm formation is the important reasons for drug resistance of SS infections.• The review includes the regulatory mechanism of SS biofilm formation.• The review includes the drug resistance mechanisms of SS biofilm.
Collapse
|
8
|
Zuo J, Yin H, Hu J, Miao J, Chen Z, Qi K, Wang Z, Gong J, Phouthapane V, Jiang W, Mi R, Huang Y, Wang C, Han X. Lsr operon is associated with AI-2 transfer and pathogenicity in avian pathogenic Escherichia coli. Vet Res 2019; 50:109. [PMID: 31831050 PMCID: PMC6909531 DOI: 10.1186/s13567-019-0725-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022] Open
Abstract
The function of Autoinducer-2 (AI-2) which acts as the signal molecule of LuxS-mediated quorum sensing, is regulated through the lsr operon (which includes eight genes: lsrK, lsrR, lsrA, lsrC, lsrD, lsrB, lsrF, and lsrG). However, the functions of the lsr operon remain unclear in avian pathogenic Escherichia coli (APEC), which causes severe respiratory and systemic diseases in poultry. In this study, the presence of the lsr operon in 60 APEC clinical strains (serotypes O1, O2, and O78) was investigated and found to be correlated with serotype and has the highest detection rate in O78. The AI-2 binding capacity of recombinant protein LsrB of APEC (APEC-LsrB) was verified and was found to bind to AI-2 in vitro. In addition, the lsr operon was mutated in an APEC strain (APEC94Δlsr(Cm)) and the mutant was found to be defective in motility and AI-2 uptake. Furthermore, deletion of the lsr operon attenuated the virulence of APEC, with the LD50 of APEC94Δlsr(Cm) decreasing 294-fold compared with wild-type strain APEC94. The bacterial load in the blood, liver, spleen, and kidneys of ducks infected with APEC94Δlsr(Cm) decreased significantly (p < 0.0001). The results of transcriptional analysis showed that 62 genes were up-regulated and 415 genes were down-regulated in APEC94Δlsr(Cm) compared with the wild-type strain and some of the down-regulated genes were associated with the virulence of APEC. In conclusion, our study suggests that lsr operon plays a role in the pathogenesis of APEC.
Collapse
Affiliation(s)
- Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huifang Yin
- College of Life Science, Longyan University, Longyan, 364000, People's Republic of China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Kezong Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane, 22797, Lao PDR
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Rongsheng Mi
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Yan Huang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Chen Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China.
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
9
|
Fleitas Martínez O, Rigueiras PO, Pires ÁDS, Porto WF, Silva ON, de la Fuente-Nunez C, Franco OL. Interference With Quorum-Sensing Signal Biosynthesis as a Promising Therapeutic Strategy Against Multidrug-Resistant Pathogens. Front Cell Infect Microbiol 2019; 8:444. [PMID: 30805311 PMCID: PMC6371041 DOI: 10.3389/fcimb.2018.00444] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Faced with the global health threat of increasing resistance to antibiotics, researchers are exploring interventions that target bacterial virulence factors. Quorum sensing is a particularly attractive target because several bacterial virulence factors are controlled by this mechanism. Furthermore, attacking the quorum-sensing signaling network is less likely to select for resistant strains than using conventional antibiotics. Strategies that focus on the inhibition of quorum-sensing signal production are especially attractive because the enzymes involved are expressed in bacterial cells but are not present in their mammalian counterparts. We review here various approaches that are being taken to interfere with quorum-sensing signal production via the inhibition of autoinducer-2 synthesis, PQS synthesis, peptide autoinducer synthesis, and N-acyl-homoserine lactone synthesis. We expect these approaches will lead to the discovery of new quorum-sensing inhibitors that can help to stem the tide of antibiotic resistance.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Pietra Orlandi Rigueiras
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Állan da Silva Pires
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - William Farias Porto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Porto Reports, Brasília, Brazil
| | - Osmar Nascimento Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States.,The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
10
|
Zuo J, Tu C, Wang Y, Qi K, Hu J, Wang Z, Mi R, Yan huang, Chen Z, Han X. The role of the wzy gene in lipopolysaccharide biosynthesis and pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 2019; 127:296-303. [DOI: 10.1016/j.micpath.2018.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
|
11
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigellaflexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Division of Biological Sciences, Indian Institute of Science, Bengaluru, India.,Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Division of Biological Sciences, Indian Institute of Science, Bengaluru, India.,Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Division of Biological Sciences, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
12
|
Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Appl Microbiol Biotechnol 2018; 102:9121-9129. [PMID: 30209548 DOI: 10.1007/s00253-018-9356-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Streptococcus suis (S. suis) is a major swine pathogen and an important zoonotic agent. Like most pathogens, the ability of S. suis to form biofilms plays a significant role in its virulence and drug resistance. A better understanding of the mechanisms involved in biofilm formation by S. suis as well as of the methods to efficiently remove and kill biofilm-embedded bacteria can be of high interest for the prevention and treatment of S. suis infections. The aim of this literature review is to update our current knowledge of S. suis biofilm formation, regulatory mechanisms, drug-resistance mechanisms, and disinfection strategies.
Collapse
|
13
|
Zhao J, Quan C, Jin L, Chen M. Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. J Biotechnol 2018; 268:53-60. [PMID: 29355813 DOI: 10.1016/j.jbiotec.2018.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/23/2017] [Accepted: 01/13/2018] [Indexed: 11/17/2022]
Abstract
Autoinducer-2 (AI-2) is a major signal molecule in bacterial quorum sensing (QS) besides N-acyl homoserine lactones (AHLs or AI-1). AI-2 mediated QS pathways have been proved to regulate gene expression and physiological behaviors of bacteria in either intraspecies or interspecies communication. Recent reviews have mainly summarized AI-2 structures, AI-2 mediated QS pathways and the role of AI-2 in gene regulation, etc. In this article, we present a comprehensive review of AI-2 production, detection and applications. Firstly, intracellular AI-2 synthetic routes were outlined and environmental influences on AI-2 production were focused. Furthermore, recent advances in AI-2 detection and quantification were elucidated from an overall perspective. An in-depth understanding of mechanisms and features of various detection methods may facilitate development of new technologies aimed at signal molecule detection. Finally, utilization of AI-2 mediated QS in health improvement, water treatment and drug production indicate promising and extensive application perspectives of QS strategies.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, 116600, Dalian, China; College of Life Science, Dalian Minzu University, 116600, Dalian, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, 116600, Dalian, China; College of Life Science, Dalian Minzu University, 116600, Dalian, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, 116600, Dalian, China; College of Life Science, Dalian Minzu University, 116600, Dalian, China
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, 116034, Dalian, China.
| |
Collapse
|
14
|
Different activated methyl cycle pathways affect the pathogenicity of avian pathogenic Escherichia coli. Vet Microbiol 2017; 211:160-168. [DOI: 10.1016/j.vetmic.2017.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023]
|
15
|
Wu X, Lv X, Lu J, Yu S, Jin Y, Hu J, Zuo J, Mi R, Huang Y, Qi K, Chen Z, Han X. The role of the ptsI gene on AI-2 internalization and pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 2017; 113:321-329. [PMID: 29111323 DOI: 10.1016/j.micpath.2017.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
The LuxS/AI-2 quorum sensing mechanism can regulate the physiological functions of avian pathogenic Escherichia coli (APEC) through internalization of the small molecule autoinducer-2 (AI-2). The ptsI gene encodes enzyme I, which participates in the phosphotransferase system (PTS) that regulates the virulence and AI-2 internalization of bacteria. The aim of the present study was to determine the effect of ptsI on AI-2 internalization and other pathogenesis process in APEC using a ptsI mutant of the APEC strain DE17 (serotype O2), namely DE17ΔptsI. The results showed that deletion of the ptsI gene changed the rdar (red dry and rough) morphotype and decreased motility and biofilm formation in APEC (p < 0.05). Furthermore, scanning electron microscopy showed that the biofilm structure of DE17ΔptsI became sparse and more extracellular, as compared with the wild-type strain DE17. Moreover, AI-2 assay showed that AI-2 was internalized by DE17ΔptsI, while the recombinant PtsI protein had no AI-2 binding activity. Furthermore, deletion of the ptsI gene in APEC significantly increased adherence to DF-1 cells (p < 0.05). The 50% lethal dose of DE17ΔptsI was decreased by 17.8-fold and the bacterial loads of DE17ΔptsI were decreased by 13600-, 68.5-, 131-, and 3600-fold in the blood, liver, spleen, and kidney, respectively, as compared to the DE17. Moreover, histopathological analysis showed that the mutant DE17ΔptsI was associated with reduced pathological changes in the heart, liver, spleen, and kidney of ducklings, respectively, as compared to the wild-type strain DE17. The results of this study will benefit further studies on the functions of the ptsI in APEC.
Collapse
Affiliation(s)
- Xiaoka Wu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Xiaolong Lv
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jinye Lu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, PR China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Yawei Jin
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Rongsheng Mi
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Yan Huang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Kezong Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China.
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China.
| |
Collapse
|
16
|
Zhang Y, Qi K, Jing Y, Zuo J, Hu J, Lv X, Chen Z, Mi R, Huang Y, Yu S, Han X. LsrB-based and temperature-dependent identification of bacterial AI-2 receptor. AMB Express 2017; 7:188. [PMID: 29019162 PMCID: PMC5634988 DOI: 10.1186/s13568-017-0486-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 01/05/2023] Open
Abstract
The luxS gene is required for autoinducer-2 (AI-2) synthesis in many bacterial species. AI-2 is taken up by a specific receptor to regulate multiple bacterial activities. However, the lack of methods to identify AI-2 receptors has impeded investigations into the roles of AI-2. Here, a luxS mutant of Escherichia coli strain BL21 (DE3) was constructed (named BL21∆luxS), and the recombinant LsrB protein of Salmonella enterica was expressed in BL21∆luxS and BL21 cells, which were named LsrB (BL21∆luxS) and LsrB (BL21), respectively. The results of the activity of recombinant LsrB binding showed that LsrB (BL21) bound to endogenous AI-2 (produced from BL21 strain), while LsrB (BL21∆luxS) did not (as BL21∆luxS cannot produce AI-2). However, the results of recombinant LsrB binding showed that LsrB (BL21∆luxS) can bind exogenous AI-2, which was released from LsrB (BL21∆luxS) at 55 °C for 10 min, while LsrB (BL21) could not bind exogenous AI-2 (due to binding of endogenous AI-2 before). Furthermore, analysis of the thermal stability of AI-2 showed that that AI-2 activity was relatively high at incubation temperatures below 65 °C. These findings will be beneficial for screening of new AI-2 receptors in different bacterial species.
Collapse
|
17
|
Liu L, Wu R, Zhang J, Shang N, Li P. D-Ribose Interferes with Quorum Sensing to Inhibit Biofilm Formation of Lactobacillus paraplantarum L-ZS9. Front Microbiol 2017; 8:1860. [PMID: 29018429 PMCID: PMC5622935 DOI: 10.3389/fmicb.2017.01860] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/12/2017] [Indexed: 01/31/2023] Open
Abstract
Biofilms help bacteria survive under adverse conditions, and the quorum sensing (QS) system plays an important role in regulating their activities. Quorum sensing inhibitors (QSIs) have great potential to inhibit pathogenic biofilm formation and are considered possible replacements for antibiotics; however, further investigation is required to understand the mechanisms of action of QSIs and to avoid inhibitory effects on beneficial bacteria. Lactobacillus paraplantarum L-ZS9, isolated from fermented sausage, is a bacteriocin-producing bacteria that shows potential to be a probiotic starter. Since exogenous autoinducer-2 (AI-2) promoted biofilm formation of the strain, expression of genes involved in AI-2 production was determined in L. paraplantarum L-ZS9, especially the key gene luxS. D-Ribose was used to inhibit biofilm formation because of its AI-2 inhibitory activity. Twenty-seven differentially expressed proteins were identified by comparative proteomic analysis following D-ribose treatment and were functionally classified into six groups. Real-time quantitative PCR showed that AI-2 had a counteractive effect on transcription of the genes tuf, fba, gap, pgm, nfo, rib, and rpoN. Over-expression of the tuf, fba, gap, pgm, and rpoN genes promoted biofilm formation of L. paraplantarum L-ZS9, while over-expression of the nfo and rib genes inhibited biofilm formation. In conclusion, D-ribose inhibited biofilm formation of L. paraplantarum L-ZS9 by regulating multiple genes involved in the glycolytic pathway, extracellular DNA degradation and transcription, and translation. This research provides a new mechanism of QSI regulation of biofilm formation of Lactobacillus and offers a valuable reference for QSI application in the future.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Ruiyun Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinlan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Shang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| |
Collapse
|