1
|
Zhao S, Hu X, Li H, Zhang H, Lu J, Li Y, Chen Z, Bao M. Diversity and structure of pelagic microbial community in Kuroshio Extension. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106697. [PMID: 39205358 DOI: 10.1016/j.marenvres.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Kuroshio Extension (KE) is the most active region of oceanic change in the North Pacific Ocean, which provides an essential place for the survival of marine microorganisms. However, Vertical changes in microbial communities in the Kuroshio Extension and the mechanisms by which environmental factors drive vertical changes in community structure remain unclear. In this work, microbial diversity, abundance, and community structure of 12 water layers (from surface to bottom) at five stations were uncovered by 16S rRNA gene high-throughput sequencing. Microbial diversity and richness decreased with increasing seawater depth. Microorganisms in the euphotic zone can be well separated from other zones based on NMDS analysis. Proteobacteria (65.20%), Bacteroidota (8.48%), Actinobacteriota (5.76%), and Crenarchaeota (4.49%) accounted for a relatively large proportion and their distribution is similar in four zones. Most of microorganisms were significantly (Spearman test, p < 0.05) correlated with salinity, density, pressure, and temperature. This work enhances our understanding of vertical microbial diversity and provides insights into the pelagic microbial community structure.
Collapse
Affiliation(s)
- Shanshan Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Honghai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Zhaohui Chen
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China; Laoshan Laboratory, Qingdao, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| |
Collapse
|
2
|
Mochizuki T, Tanigawa T, Shindo S, Suematsu M, Oguchi Y, Mioka T, Kato Y, Fujiyama M, Hatano E, Yamaguchi M, Chibana H, Abe F. Activation of CWI pathway through high hydrostatic pressure, enhancing glycerol efflux via the aquaglyceroporin Fps1 in Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar92. [PMID: 37379203 PMCID: PMC10398897 DOI: 10.1091/mbc.e23-03-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell-wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma membrane eisosome structure, activates the CWI pathway through the function of Wsc1. Phosphorylation of Slt2, the downstream mitogen-activated protein kinase, was increased at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway, and contributes to the reduction in intracellular osmolarity under high pressure. The elucidation of the mechanisms underlying adaptation to high pressure through the well-established CWI pathway could potentially translate to mammalian cells and provide novel insights into cellular mechanosensation.
Collapse
Affiliation(s)
- Takahiro Mochizuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Toshiki Tanigawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Seiya Shindo
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Momoka Suematsu
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuki Oguchi
- Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yusuke Kato
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Mina Fujiyama
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Eri Hatano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
3
|
Jiang JP, Liu X, Liao YF, Shan J, Zhu YP, Liu CH. Genomic insights into Aspergillus sydowii 29R-4-F02: unraveling adaptive mechanisms in subseafloor coal-bearing sediment environments. Front Microbiol 2023; 14:1216714. [PMID: 37455735 PMCID: PMC10339353 DOI: 10.3389/fmicb.2023.1216714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Aspergillussydowii is an important filamentous fungus that inhabits diverse environments. However, investigations on the biology and genetics of A. sydowii in subseafloor sediments remain limited. Methods Here, we performed de novo sequencing and assembly of the A. sydowii 29R-4-F02 genome, an isolate obtained from approximately 2.4 km deep, 20-million-year-old coal-bearing sediments beneath the seafloor by employing the Nanopore sequencing platform. Results and Discussion The generated genome was 37.19 Mb with GC content of 50.05%. The final assembly consisted of 11 contigs with N50 of 4.6 Mb, encoding 12,488 putative genes. Notably, the subseafloor strain 29R-4-F02 showed a higher number of carbohydrate-active enzymes (CAZymes) and distinct genes related to vesicular fusion and autophagy compared to the terrestrial strain CBS593.65. Furthermore, 257 positively selected genes, including those involved in DNA repair and CAZymes were identified in subseafloor strain 29R-4-F02. These findings suggest that A. sydowii possesses a unique genetic repertoire enabling its survival in the extreme subseafloor environments over tens of millions of years.
Collapse
Affiliation(s)
- Jun-Peng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yi-Fan Liao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yu-Ping Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Jones EBG, Ramakrishna S, Vikineswary S, Das D, Bahkali AH, Guo SY, Pang KL. How Do Fungi Survive in the Sea and Respond to Climate Change? J Fungi (Basel) 2022; 8:jof8030291. [PMID: 35330293 PMCID: PMC8949214 DOI: 10.3390/jof8030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
With the over 2000 marine fungi and fungal-like organisms documented so far, some have adapted fully to life in the sea, while some have the ability to tolerate environmental conditions in the marine milieu. These organisms have evolved various mechanisms for growth in the marine environment, especially against salinity gradients. This review highlights the response of marine fungi, fungal-like organisms and terrestrial fungi (for comparison) towards salinity variations in terms of their growth, spore germination, sporulation, physiology, and genetic adaptability. Marine, freshwater and terrestrial fungi and fungal-like organisms vary greatly in their response to salinity. Generally, terrestrial and freshwater fungi grow, germinate and sporulate better at lower salinities, while marine fungi do so over a wide range of salinities. Zoosporic fungal-like organisms are more sensitive to salinity than true fungi, especially Ascomycota and Basidiomycota. Labyrinthulomycota and marine Oomycota are more salinity tolerant than saprolegniaceous organisms in terms of growth and reproduction. Wide adaptability to saline conditions in marine or marine-related habitats requires mechanisms for maintaining accumulation of ions in the vacuoles, the exclusion of high levels of sodium chloride, the maintenance of turgor in the mycelium, optimal growth at alkaline pH, a broad temperature growth range from polar to tropical waters, and growth at depths and often under anoxic conditions, and these properties may allow marine fungi to positively respond to the challenges that climate change will bring. Other related topics will also be discussed in this article, such as the effect of salinity on secondary metabolite production by marine fungi, their evolution in the sea, and marine endophytes.
Collapse
Affiliation(s)
- E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (E.B.G.J.); (A.H.B.)
| | - Sundari Ramakrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Sabaratnam Vikineswary
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Diptosh Das
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (E.B.G.J.); (A.H.B.)
| | - Sheng-Yu Guo
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202301, Taiwan;
| | - Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202301, Taiwan;
- Correspondence:
| |
Collapse
|
5
|
Edgcomb VP, Teske AP, Mara P. Microbial Hydrocarbon Degradation in Guaymas Basin-Exploring the Roles and Potential Interactions of Fungi and Sulfate-Reducing Bacteria. Front Microbiol 2022; 13:831828. [PMID: 35356530 PMCID: PMC8959706 DOI: 10.3389/fmicb.2022.831828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin.
Collapse
Affiliation(s)
| | - Andreas P. Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paraskevi Mara
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
6
|
Pham TT, Dinh KV, Nguyen VD. Biodiversity and Enzyme Activity of Marine Fungi with 28 New Records from the Tropical Coastal Ecosystems in Vietnam. MYCOBIOLOGY 2021; 49:559-581. [PMID: 35035248 PMCID: PMC8725946 DOI: 10.1080/12298093.2021.2008103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The coastal marine ecosystems of Vietnam are one of the global biodiversity hotspots, but the biodiversity of marine fungi is not well known. To fill this major gap of knowledge, we assessed the genetic diversity (ITS sequence) of 75 fungal strains isolated from 11 surface coastal marine and deeper waters in Nha Trang Bay and Van Phong Bay using a culture-dependent approach and 5 OTUs (Operational Taxonomic Units) of fungi in three representative sampling sites using next-generation sequencing. The results from both approaches shared similar fungal taxonomy to the most abundant phylum (Ascomycota), genera (Candida and Aspergillus) and species (Candida blankii) but were different at less common taxa. Culturable fungal strains in this study belong to 3 phyla, 5 subdivisions, 7 classes, 12 orders, 17 families, 22 genera and at least 40 species, of which 29 species have been identified and several species are likely novel. Among identified species, 12 and 28 are new records in global and Vietnamese marine areas, respectively. The analysis of enzyme activity and the checklist of trophic mode and guild assignment provided valuable additional biological information and suggested the ecological function of planktonic fungi in the marine food web. This is the largest dataset of marine fungal biodiversity on morphology, phylogeny and enzyme activity in the tropical coastal ecosystems of Vietnam and Southeast Asia. Biogeographic aspects, ecological factors and human impact may structure mycoplankton communities in such aquatic habitats.
Collapse
Affiliation(s)
- Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| | - Khuong V. Dinh
- Institute of Aquaculture, Nha Trang University, Nha Trang, Vietnam
| | - Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| |
Collapse
|
7
|
Wang M, Ma Y, Cai L, Tedersoo L, Bahram M, Burgaud G, Long X, Zhang S, Li W. Seasonal dynamics of mycoplankton in the Yellow Sea reflect the combined effect of riverine inputs and hydrographic conditions. Mol Ecol 2021; 30:3624-3637. [PMID: 34002437 DOI: 10.1111/mec.15986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Little is known about how multiple factors including land-based inputs and ocean currents affect the spatiotemporal distribution of the mycoplankton in coastal regions. To explore the seasonal changes of mycoplanktonic communities and potential environmental drivers, we collected water samples from the Yellow Sea, used here as a model for subtropical sea habitats, in different seasons over two years. Compared with winter and spring, summer exhibited higher levels of fungal richness and community heterogeneity in the water column. The seasonal shifts in mycoplankton diversity and community composition were mainly ascribed to freshwater inputs, the Cold Water Mass and invasion of the Yellow Sea Warm Current. Among the physicochemical variables tested, temperature was the primary determinant of fungal diversity and showed contrasting influences on fungal richness in the surface and bottom waters during summer. In addition, we provide evidence for the community similarity and dissolved nutrients of different water bodies to highlight the potential origin of the Cold Water Mass. Our findings bring new understanding on the factors determining the dynamics of mycoplankton communities by modelling the influence of physicochemical variables and tracking the geographical distribution of certain fungal taxa.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yiyuan Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Université de Brest, Plouzané, France
| | - Xuedan Long
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shoumei Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
8
|
Gonçalves MFM, Esteves AC, Alves A. Revealing the hidden diversity of marine fungi in Portugal with the description of two novel species, Neoascochyta fuci sp. nov. and Paraconiothyrium salinum sp. nov. Int J Syst Evol Microbiol 2020; 70:5337-5354. [PMID: 32845832 DOI: 10.1099/ijsem.0.004410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungi are ubiquitous organisms with a wide distribution in almost all ecosystems, including marine environments. Coastal and estuarine ecosystems remain poorly unexplored as fungal habitats, potentially harbouring a hidden diversity with important ecological roles. During an extensive survey of marine fungi in coastal and estuarine Portuguese environments, a collection of 612 isolates was obtained from water, algae, sponges and driftwood. From these, 282 representative isolates were selected through microsatellite-primed PCR (MSP-PCR) fingerprinting analysis, which were identified based on DNA sequence data. The collection yielded 117 taxa from 38 distinct genera, which were identified using DNA sequence analysis. Overall, fungal community composition varied with host/substrate, but the most abundant taxa in the collection were Cladosporium cladosporioides, Penicillium terrigenum, Penicillium brevicompactum and Fusarium equiseti/incarnatum complex. The occurrence of a high fungal diversity harbouring novel species was disclosed. Through a multilocus phylogeny based on ITS, tub2 and tef1-α sequences, in conjunction with morphological and physiological data, we propose Neoascochyta fuci sp. nov. and Paraconiothyrium salinum sp. nov.
Collapse
Affiliation(s)
| | - Ana C Esteves
- Present address: Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Investigation (CIIS), Viseu, Portugal.,CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur Alves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Quemener M, Mara P, Schubotz F, Beaudoin D, Li W, Pachiadaki M, Sehein TR, Sylvan JB, Li J, Barbier G, Edgcomb V, Burgaud G. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ Microbiol 2020; 22:3950-3967. [PMID: 32743889 DOI: 10.1111/1462-2920.15181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023]
Abstract
The lithified oceanic crust, lower crust gabbros in particular, has remained largely unexplored by microbiologists. Recently, evidence for heterogeneously distributed viable and transcriptionally active autotrophic and heterotrophic microbial populations within low-biomass communities was found down to 750 m below the seafloor at the Atlantis Bank Gabbro Massif, Indian Ocean. Here, we report on the diversity, activity and adaptations of fungal communities in the deep oceanic crust from ~10 to 780 mbsf by combining metabarcoding analyses with mid/high-throughput culturing approaches. Metabarcoding along with culturing indicate a low diversity of viable fungi, mostly affiliated to ubiquitous (terrestrial and aquatic environments) taxa. Ecophysiological analyses coupled with metatranscriptomics point to viable and transcriptionally active fungal populations engaged in cell division, translation, protein modifications and other vital cellular processes. Transcript data suggest possible adaptations for surviving in the nutrient-poor, lithified deep biosphere that include the recycling of organic matter. These active communities appear strongly influenced by the presence of cracks and veins in the rocks where fluids and resulting rock alteration create micro-niches.
Collapse
Affiliation(s)
- Maxence Quemener
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Paraskevi Mara
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Florence Schubotz
- MARUM-Center for Marine Environmental Sciences, University Bremen, Leobener Strasse 8, Bremen, 28359, Germany
| | - David Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Wei Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Maria Pachiadaki
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Taylor R Sehein
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, 77845, USA
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Georges Barbier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Virginia Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Gaëtan Burgaud
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| |
Collapse
|
10
|
Pang KL, Chiang MWL, Guo SY, Shih CY, Dahms HU, Hwang JS, Cha HJ. Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. PLoS One 2020; 15:e0233621. [PMID: 32453769 PMCID: PMC7250430 DOI: 10.1371/journal.pone.0233621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/08/2020] [Indexed: 12/03/2022] Open
Abstract
A high diversity of fungi was discovered on various substrates collected at the marine shallow-water Kueishan Island Hydrothermal Vent Field, Taiwan, using culture and metabarcoding methods but whether these fungi can grow and play an active role in such an extreme environment is unknown. We investigated the combined effects of different salinity, temperature and pH on growth of ten fungi (in the genera Aspergillus, Penicillium, Fodinomyces, Microascus, Trichoderma, Verticillium) isolated from the sediment and the vent crab Xenograpsus testudinatus. The growth responses of the tested fungi could be referred to three groups: (1) wide pH, salinity and temperature ranges, (2) salinity-dependent and temperature-sensitive, and (3) temperature-tolerant. Aspergillus terreus NTOU4989 was the only fungus which showed growth at 45 °C, pH 3 and 30 ‰ salinity, and might be active near the vents. We also carried out a transcriptome analysis to understand the molecular adaptations of A. terreus NTOU4989 under these extreme conditions. Data revealed that stress-related genes were differentially expressed at high temperature (45 °C); for instance, mannitol biosynthetic genes were up-regulated while glutathione S-transferase and amino acid oxidase genes down-regulated in response to high temperature. On the other hand, hydrogen ion transmembrane transport genes and phenylalanine ammonia lyase were up-regulated while pH-response transcription factor was down-regulated at pH 3, a relative acidic environment. However, genes related to salt tolerance, such as glycerol lipid metabolism and mitogen-activated protein kinase, were up-regulated in both conditions, possibly related to maintaining water homeostasis. The results of this study revealed the genetic evidence of adaptation in A. terreus NTOU4989 to changes of environmental conditions.
Collapse
Affiliation(s)
- Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | | | - Sheng-Yu Guo
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Yu Shih
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Hans U Dahms
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Hyo-Jung Cha
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
11
|
Unique Solid Phase Microextraction Sampler Reveals Distinctive Biogeochemical Profiles among Various Deep-Sea Hydrothermal Vents. Sci Rep 2020; 10:1360. [PMID: 31992838 PMCID: PMC6987176 DOI: 10.1038/s41598-020-58418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022] Open
Abstract
Current methods for biochemical and biogeochemical analysis of the deep-sea hydrothermal vent ecosystems rely on water sample recovery, or in situ analysis using underwater instruments with limited range of analyte detection and limited sensitivity. Even in cases where large quantities of sample are recovered, labile dissolved organic compounds may not be detected due to time delays between sampling and preservation. Here, we present a novel approach for in situ extraction of organic compounds from hydrothermal vent fluids through a unique solid phase microextraction (SPME) sampler. These samplers were deployed to sample effluent of vents on sulphide chimneys, located on Axial Seamount in the North-East Pacific, in the Urashima field on the southern Mariana back-arc, and at the Hafa Adai site in the central Mariana back-arc. Among the compounds that were extracted, a wide range of unique organic compounds, including labile dissolved organic sulfur compounds, were detected through high-resolution LC-MS/MS, among which were biomarkers of anammox bacteria, fungi, and lower animals. This report is the first to show that SPME can contribute to a broader understanding of deep sea ecology and biogeochemical cycles in hydrothermal vent ecosystems.
Collapse
|
12
|
Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 2019; 24:227-238. [PMID: 31758267 DOI: 10.1007/s00792-019-01148-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.
Collapse
|
13
|
Li W, Wang M, Burgaud G, Yu H, Cai L. Fungal Community Composition and Potential Depth-Related Driving Factors Impacting Distribution Pattern and Trophic Modes from Epi- to Abyssopelagic Zones of the Western Pacific Ocean. MICROBIAL ECOLOGY 2019; 78:820-831. [PMID: 30993370 DOI: 10.1007/s00248-019-01374-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Fungi play an important role in cycling organic matter and nutrients in marine ecosystems. However, the distribution of fungal communities in the ocean, especially the vertical distribution along depth in the water column, remained poorly understood. Here, we assess the depth-related distribution pattern of fungal communities along the water column from epi- to abyssopelagic zones of the Western Pacific Ocean using internal transcribed spacer 2 (ITS2) metabarcoding. Majority of the assigned OTUs were affiliated to Ascomycota, followed by three other minor phyla (Basidiomycota, Chytridiomycota, and Mucoromycota). The epipelagic zone harbored a higher OTU richness with distinct fungal communities as compared with meso-, bathy-, and abyssopelagic zones. Across the whole water column, depth appears as a key parameter for both fungal α- and β-diversity. However, when the dataset was split into the upper (5-500 m) and deeper (below 500 m) layers, no significant correlation was observed between depth and community compositions. In the upper layer, temperature and dissolved oxygen were recognized as the primary environmental factors shaping fungal α- and β- diversity. By parsing fungal OTUs into ecological categories, multi-trophic mode of nutrition was found to be more prevalent with increasing depth, suggesting a potential adaptation to the extreme conditions of the deep sea. This study provides new and meaningful information on the depth-stratified fungal diversity, community structure, and putative ecological roles in the open sea.
Collapse
Affiliation(s)
- Wei Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mengmeng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gaëtan Burgaud
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Huaming Yu
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Physical Oceanography, MOE, Qingdao, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Serra I, Capusoni C, Molinari F, Musso L, Pellegrino L, Compagno C. Marine Microorganisms for Biocatalysis: Selective Hydrolysis of Nitriles with a Salt-Resistant Strain of Meyerozyma guilliermondii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:229-239. [PMID: 30684102 DOI: 10.1007/s10126-019-09875-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
A screening among marine yeasts was carried out for nitrile hydrolyzing activity. Meyerozyma guilliermondii LM2 (UBOCC-A-214008) was able to efficiently grow on benzonitrile and cyclohexanecarbonitrile (CECN) as sole nitrogen sources. A two-step one-pot method for obtaining cells of M. guilliermondii LM2 (UBOCC-A-214008) endowed with high nitrilase activity was established; the resulting whole cells converted different nitriles with high molar conversions and showed interesting enantioselectivity toward racemic substrates. Nitrilase from M. guilliermondii LM2 (UBOCC-A-214008) displayed high activity on aromatic substrates, but also arylaliphatic and aliphatic substrates were accepted. Salt-resistant M. guilliermondii LM2 (UBOCC-A-214008) was used in media with different salinity, being highly active up to 1.5 M NaCl concentration. Finally, hydrolysis of nitriles was efficiently performed using a bioprocess (yeast growth and biotransformation with resting cells) entirely carried out in seawater.
Collapse
Affiliation(s)
- Immacolata Serra
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via L. Mangiagalli 25, Milan, Italy.
| | - Claudia Capusoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via L. Mangiagalli 25, Milan, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via L. Mangiagalli 25, Milan, Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via L. Mangiagalli 25, Milan, Italy
| | - Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via L. Mangiagalli 25, Milan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via L. Mangiagalli 25, Milan, Italy
| |
Collapse
|
15
|
Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EFY, Ianiri G, Jones AC, Kagami M, Picard KT, Quandt CA, Raghukumar S, Riquelme M, Stajich J, Vargas-Muñiz J, Walker AK, Yarden O, Gladfelter AS. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019; 10:e01189-18. [PMID: 30837337 PMCID: PMC6401481 DOI: 10.1128/mbio.01189-18] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles.
Collapse
Affiliation(s)
- Anthony Amend
- Department of Botany, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Gaetan Burgaud
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - M H Gutiérrez
- Departamento de Oceanografía, Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erik F Y Hom
- Department of Biology, University of Mississippi, Oxford, Mississippi, USA
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adam C Jones
- Gordon and Betty Moore Foundation, Palo Alto, California, USA
| | - Maiko Kagami
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Kathryn T Picard
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - C Alisha Quandt
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, Colorado, USA
| | | | - Mertixell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Jason Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - José Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison K Walker
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
16
|
A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci Rep 2018; 8:6582. [PMID: 29700429 PMCID: PMC5919928 DOI: 10.1038/s41598-018-25079-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/11/2018] [Indexed: 02/03/2023] Open
Abstract
Brines are hypersaline solutions which have been found within the Antarctic permafrost from the Tarn Flat area (Northern Victoria Land). Here, an investigation on the possible presence and diversity of fungal life within those peculiar ecosystems has been carried out for the first time. Brines samples were collected at 4- and 5-meter depths (TF1 and TF2, respectively), from two brines separated by a thin ice layer. The samples were analyzed via Illumina MiSeq targeting the ITS region specific for both yeasts and filamentous fungi. An unexpected high alpha diversity was found. Beta diversity analysis revealed that the two brines were inhabited by two phylogenetically diverse fungal communities (Unifrac value: 0.56, p value < 0.01; Martin’s P-test p-value < 0.001) characterized by several specialist taxa. The most abundant fungal genera were Candida sp., Leucosporidium sp., Naganishia sp. and Sporobolomyces sp. in TF1, and Leucosporidium sp., Malassezia sp., Naganishia sp. and Sporobolomyces sp. in TF2. A few hypotheses on such differentiation have been done: i) the different chemical and physical composition of the brines; ii) the presence in situ of a thin layer of ice, acting as a physical barrier; and iii) the diverse geological origin of the brines.
Collapse
|
17
|
|
18
|
Pang KL, Overy DP, Jones EG, Calado MDL, Burgaud G, Walker AK, Johnson JA, Kerr RG, Cha HJ, Bills GF. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Pachiadaki MG, Rédou V, Beaudoin DJ, Burgaud G, Edgcomb VP. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy. Front Microbiol 2016; 7:846. [PMID: 27375571 PMCID: PMC4899926 DOI: 10.3389/fmicb.2016.00846] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Vanessa Rédou
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, ESIAB, Technopôle de Brest Iroise, Université de Brest Plouzané, France
| | - David J Beaudoin
- Department of Biology, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, ESIAB, Technopôle de Brest Iroise, Université de Brest Plouzané, France
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| |
Collapse
|
20
|
Fungal communities from the calcareous deep-sea sediments in the Southwest India Ridge revealed by Illumina sequencing technology. World J Microbiol Biotechnol 2016; 32:78. [PMID: 27038948 DOI: 10.1007/s11274-016-2030-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58-63 % and 36-42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.
Collapse
|
21
|
Ragon M, Nguyen Thi Minh H, Guyot S, Loison P, Burgaud G, Dupont S, Beney L, Gervais P, Perrier-Cornet JM. Innovative High Gas Pressure Microscopy Chamber Designed for Biological Cell Observation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:63-70. [PMID: 26810277 DOI: 10.1017/s1431927615015639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An original high-pressure microscopy chamber has been designed for real-time visualization of biological cell growth during high isostatic (gas or liquid) pressure treatments up to 200 MPa. This new system is highly flexible allowing cell visualization under a wide range of pressure levels as the thickness and the material of the observation window can be easily adapted. Moreover, the design of the observation area allows different microscope objectives to be used as close as possible to the observation window. This chamber can also be temperature controlled. In this study, the resistance and optical properties of this new high-pressure chamber have been tested and characterized. The use of this new chamber was illustrated by a real-time study of the growth of two different yeast strains - Saccharomyces cerevisiae and Candida viswanathii - under high isostatic gas pressure (30 or 20 MPa, respectively). Using image analysis software, we determined the evolution of the area of colonies as a function of time, and thus calculated colony expansion rates.
Collapse
Affiliation(s)
- Mélanie Ragon
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Hue Nguyen Thi Minh
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Stéphane Guyot
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Pauline Loison
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Gaëtan Burgaud
- 2Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882),IFR 148,Université Européenne de Bretagne/Université de Brest/ESMISAB,Technopole Brest-Iroise,29280 Plouzané,France
| | - Sébastien Dupont
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Laurent Beney
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Patrick Gervais
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| | - Jean-Marie Perrier-Cornet
- 1UMR A 02.102 Procédés Alimentaires et Microbiologiques,Université Bourgogne Franche-Comté/AgroSup Dijon,1 Esplanade Erasme,21000 Dijon,France
| |
Collapse
|
22
|
Jebbar M. Deep sea, the last great unexplored earth frontier harboring the largest unknown and untapped remote microbial diversity on our planet. Res Microbiol 2015; 166:665-7. [PMID: 26343981 DOI: 10.1016/j.resmic.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Mohamed Jebbar
- Université de Bretagne Occidentale, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), 4 rue Dumont d'Urville, Technopole Brest-Iroise, 29 280 Plouzané, France; CNRS, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), 4 rue Dumont d'Urville, Technopole Brest-Iroise, 29 280 Plouzané, France; Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Brest-Iroise, BP70, 29 280 Plouzané, France.
| |
Collapse
|