1
|
Ren L, Li J, Li H, Guo Z, Li J, Lv Y. Inoculating exogenous bacterium Brevibacillus laterosporus ZR-11 at maturity stage accelerates composting maturation by regulating physicochemical parameters and indigenous bacterial community succession. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110888-110900. [PMID: 37796351 DOI: 10.1007/s11356-023-30091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Brevibacillus laterosporus ZR-11, a bio-control strain, was innovatively inoculated at maturity stage of composting to clarify its effect on physicochemical parameters and indigenous bacterial community structure in compost pile. Results revealed that ZR-11 inoculum rapidly increased pile temperature to 52 ºC and raised germination index (GI) value to beyond 85% on day 3, thereby achieving higher pile temperature and GI in the inoculated group than the non-inoculated group almost along maturity stage, and also decreased C/N ratio of the inoculated group to below 20 by composting end (day 8). Also, ZR-11 succeeded in colonizing compost pile along maturity stage. These suggested that ZR-11 as inoculum at maturity stage could accelerate compost maturation and have a potential to participate in bio-fertilizer production. High-throughput sequencing indicated that bacterial community structure experienced substantial succession in the inoculated and non-inoculated groups, and Firmicutes, Proteobacteria, and Actinobacteria were the dominant phyla in the two groups during maturity stage, with their abundances higher in the inoculated group. Saccharomonospora and Ammoniibacillus abundance increased on day 3 while Actinomadura abundance increased on day 6 in the inoculated group. As verified statistically, pile temperature and pH were key factors closely linked to dominant genera abundance, where Saccharomonospora and Ammoniibacillus abundance were positively correlated to pile temperature, while Actinomadura abundance was positively correlated to pile pH. Thus, it was inferred that ZR-11 inoculum could improve parameters such as temperature and pH to modify dominant genera abundance, thus regulating indigenous bacterial community succession, which might in turn promote compost maturation.
Collapse
Affiliation(s)
- Li Ren
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Huifen Li
- Bluestar Lehigh Engineering Institute Co., Ltd, Lianyungang, 222000, China
| | - Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Yizhong Lv
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Peralta-Ruiz Y, Rossi C, Grande-Tovar CD, Chaves-López C. Green Management of Postharvest Anthracnose Caused by Colletotrichum gloeosporioides. J Fungi (Basel) 2023; 9:623. [PMID: 37367558 DOI: 10.3390/jof9060623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Fruits and vegetables are constantly affected by postharvest diseases, of which anthracnose is one of the most severe and is caused by diverse Colletotrichum species, mainly C. gloeosporioides. In the last few decades, chemical fungicides have been the primary approach to anthracnose control. However, recent trends and regulations have sought to limit the use of these substances. Greener management includes a group of sustainable alternatives that use natural substances and microorganisms to control postharvest fungi. This comprehensive review of contemporary research presents various sustainable alternatives to C. gloeosporioides postharvest control in vitro and in situ, ranging from the use of biopolymers, essential oils, and antagonistic microorganisms to cultivar resistance. Strategies such as encapsulation, biofilms, coatings, compounds secreted, antibiotics, and lytic enzyme production by microorganisms are revised. Finally, the potential effects of climate change on C. gloeosporioides and anthracnose disease are explored. Greener management can provide a possible replacement for the conventional approach of using chemical fungicides for anthracnose postharvest control. It presents diverse methodologies that are not mutually exclusive and can be in tune with the needs and interests of new consumers and the environment. Overall, developing or using these alternatives has strong potential for improving sustainability and addressing the challenges generated by climate change.
Collapse
Affiliation(s)
- Yeimmy Peralta-Ruiz
- Programa de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad del Atlántico, Puerto Colombia 081008, Colombia
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
3
|
Liu H, Qi Y, Wang J, Jiang Y, Geng M. Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol. Sci Rep 2021; 11:24225. [PMID: 34930990 PMCID: PMC8688499 DOI: 10.1038/s41598-021-03799-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The soil-borne disease caused by Fusarium graminearum seriously affects the corn quality. Straw can greatly improve soil quality, but the effect is limited by its nature and environmental factors. This study explored the impact of straw-JF-1(biocontrol bacteria) combination on soil environment and soil disease resistance. The results showed that the combined treatment increased the proportion of soil large and small macro-aggregates by 22.50 and 3.84%, with soil organic carbon (SOC) content by 16.18 and 16.95%, respectively. Compared to treatment with returning straw to the field alone, the straw-JF-1 combination increased the soil content of humic acid, fulvic acid, and humin by 14.06, 5.50, and 4.37%, respectively. Moreover, A metagenomics showed that returning straw to the field alone increased the abundance of disease-causing fungi (Fusarium and Plectosphaerella), however, the straw-JF-1 combination significantly suppressed this phenomenon as well as improved the abundance of probiotic microorganisms such as Sphingomonas, Mortierella, Bacillus, and Pseudomonas. Functional analysis indicated that the combination of straw and JF-1 improved some bacterial functions, including inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperones and function unknown, fungal functions associated with plant and animal pathogens were effectively inhibited. Pot experiments showed that the straw-JF-1 combination effectively inhibited the Fusarium graminearum induced damage to maize seedlings. Therefore, the combination of straw and JF-1 could be a practical method for soil management.
Collapse
Affiliation(s)
- Haolang Liu
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuqi Qi
- Institute for Environment and Climate Research, Jinan University, Guangzhou, Guangdong, China
| | - Jihong Wang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.
| | - Yan Jiang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Mingxin Geng
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
4
|
Tienda S, Vida C, Lagendijk E, de Weert S, Linares I, González-Fernández J, Guirado E, de Vicente A, Cazorla FM. Soil Application of a Formulated Biocontrol Rhizobacterium, Pseudomonas chlororaphis PCL1606, Induces Soil Suppressiveness by Impacting Specific Microbial Communities. Front Microbiol 2020; 11:1874. [PMID: 32849458 PMCID: PMC7426498 DOI: 10.3389/fmicb.2020.01874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Biocontrol bacteria can be used for plant protection against some plant diseases. Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a model bacterium isolated from the avocado rhizosphere with strong antifungal antagonism mediated by the production of 2-hexyl, 5-propil resorcinol (HPR). Additionally, PcPCL1606 has biological control against different soil-borne fungal pathogens, including the causal agent of the white root rot of many woody crops and avocado in the Mediterranean area, Rosellinia necatrix. The objective of this study was to assess whether the semicommercial application of PcPCL1606 to soil can potentially affect avocado soil and rhizosphere microbial communities and their activities in natural conditions and under R. necatrix infection. To test the putative effects of PcPCL1606 on soil eukaryotic and prokaryotic communities, a formulated PcPCL1606 was prepared and applied to the soil of avocado plants growing in mesocosm experiments, and the communities were analyzed by using 16S/ITS metagenomics. PcPCL1606 survived until the end of the experiments. The effect of PcPCL1606 application on prokaryotic communities in soil and rhizosphere samples from natural soil was not detectable, and very minor changes were observed in eukaryotic communities. In the infested soils, the presence of R. necatrix strongly impacted the soil and rhizosphere microbial communities. However, after PcPCL1606 was applied to soil infested with R. necatrix, the prokaryotic community reacted by increasing the relative abundance of few families with protective features against fungal soilborne pathogens and organic matter decomposition (Chitinophagaceae, Cytophagaceae), but no new prokaryotic families were detected. The treatment of PcPCL1606 impacted the fungal profile, which strongly reduced the presence of R. necatrix in avocado soil and rhizosphere, minimizing its effect on the rest of the microbial communities. The bacterial treatment of formulated PcPCL1606 on avocado soils infested with R. necatrix resulted in biological control of the pathogen. This suppressiveness phenotype was analyzed, and PcPCL1606 has a key role in suppressiveness induction; in addition, this phenotype was strongly dependent on the production of HPR.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Ellen Lagendijk
- Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Sandra de Weert
- Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Irene Linares
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Jorge González-Fernández
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Estación Experimental “La Mayora”, Algarrobo, Spain
| | - Emilio Guirado
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Estación Experimental “La Mayora”, Algarrobo, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Francisco M. Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
5
|
Reyes-Perez JJ, Hernandez-Montiel LG, Vero S, Noa-Carrazana JC, Quiñones-Aguilar EE, Rincón-Enríquez G. Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. Journal of Food Science and Technology 2019; 56:4992-4999. [PMID: 31741523 DOI: 10.1007/s13197-019-03971-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/05/2018] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
The marine bacterium Stenotrophomonas rhizophila was assessed in vitro and in vivo as biocontrol agent against anthracnose disease of mango fruit caused by Colletotrichum gloeosporioides. The results showed that in vitro inhibition of the colony diameter and spore germination of the phytopathogen was due to the production of VOCs, competition for nutrients, and lytic enzymes. When a concentration of 1 × 108 cells ml-1 of the antagonist bacterium was applied to the fruit, disease incidence was reduced by 95%, and the lesion diameter of anthracnose decreased by 85%, which offered greater protection than the synthetic fungicide. This is the first report of antagonistic mechanisms of the marine bacterium S. rhizophila against anthracnose disease in mango, which in this study was found to be more effective than the synthetic fungicide.
Collapse
Affiliation(s)
- J J Reyes-Perez
- 1Campus Ingeniero Manuel Agustín Haz Álvarez, Universidad Técnica Estatal de Quevedo, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsáchilas, Quevedo, Los Ríos Ecuador.,2Universidad Técnica de Cotopaxi, extensión La Maná, Av. Los Almendros y calle Pujili Sector La Virgen, La Maná, Ecuador
| | - L G Hernandez-Montiel
- 3Centro de Investigaciones Biológicas del Noroeste S.C., Calle Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, Baja California Sur Mexico
| | - S Vero
- 4Facultad de Química, Universidad de la Republica, Gral. Flores 2124, Montevideo, Uruguay
| | - J C Noa-Carrazana
- Instituto de Biotecnología y Ecología Aplicada, Zona Universitaria, C.P. 91090 Xalapa, Veracruz Mexico
| | - E E Quiñones-Aguilar
- 6Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| | - G Rincón-Enríquez
- 6Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco Mexico
| |
Collapse
|
6
|
Arrebola E, Tienda S, Vida C, de Vicente A, Cazorla FM. Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606. Front Microbiol 2019; 10:719. [PMID: 31024497 PMCID: PMC6469467 DOI: 10.3389/fmicb.2019.00719] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/21/2019] [Indexed: 12/31/2022] Open
Abstract
The goal of this mini review is to summarize the relevant contribution of some beneficial traits to the behavior of the species Pseudomonas chlororaphis, and using that information, to give a practical point of view using the model biocontrol strain P. chlororaphis PCL1606 (PcPCL1606). Among the group of plant-beneficial rhizobacteria, P. chlororaphis has emerged as a plant- and soil-related bacterium that is mainly known because of its biological control of phytopathogenic fungi. Many traits have been reported to be crucial during the multitrophic interaction involving the plant, the fungal pathogen and the soil environment. To explore the different biocontrol-related traits, the biocontrol rhizobacterium PcPCL1606 has been used as a model in recent studies. This bacterium is antagonistic to many phytopathogenic fungi and displays effective biocontrol against fungal phytopathogens. Antagonistic and biocontrol activities are directly related to the production of the compound 2-hexyl, 5-propyl resorcinol (HPR), despite the production of other antifungal compounds. Furthermore, PcPCL1606 has displayed additional traits regarding its fitness in soil and plant root environments such as soil survival, efficient plant root colonization, cell-to-cell interaction or promotion of plant growth.
Collapse
Affiliation(s)
- Eva Arrebola
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| |
Collapse
|
7
|
Guevara-Avendaño E, Carrillo JD, Ndinga-Muniania C, Moreno K, Méndez-Bravo A, Guerrero-Analco JA, Eskalen A, Reverchon F. Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie van Leeuwenhoek 2017; 111:563-572. [DOI: 10.1007/s10482-017-0977-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
|