1
|
Sahgal M, Saini N, Jaggi V, Brindhaa NT, Kabdwal M, Singh RP, Prakash A. Antagonistic potential and biological control mechanisms of Pseudomonas strains against banded leaf and sheath blight disease of maize. Sci Rep 2024; 14:13580. [PMID: 38866928 PMCID: PMC11169287 DOI: 10.1038/s41598-024-64028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Rhizoctonia solani, the causal agent of banded leaf and sheath blight (BL&SB), poses a significant threat to maize and various crops globally. The increasing concerns surrounding the environmental and health impacts of chemical fungicides have encouraged intensified concern in the development of biological control agents (BCAs) as eco-friendly alternatives. In this study, we explored the potential of 22 rhizobacteria strains (AS1-AS22) isolates, recovered from the grasslands of the Pithoragarh region in the Central Himalayas, as effective BCAs against BL&SB disease. Among these strains, two Pseudomonas isolates, AS19 and AS21, exhibited pronounced inhibition of fungal mycelium growth in vitro, with respective inhibition rates of 57.04% and 54.15% in cell cultures and 66.56% and 65.60% in cell-free culture filtrates. Additionally, both strains demonstrated effective suppression of sclerotium growth. The strains AS19 and AS21 were identified as Pseudomonas sp. by 16S rDNA phylogeny and deposited under accession numbers NAIMCC-B-02303 and NAIMCC-B-02304, respectively. Further investigations revealed the mechanisms of action of AS19 and AS21, demonstrating their ability to induce systemic resistance (ISR) and exhibit broad-spectrum antifungal activity against Alternaria triticina, Bipolaris sorokiniana, Rhizoctonia maydis, and Fusarium oxysporum f. sp. lentis. Pot trials demonstrated significant reductions in BL&SB disease incidence (DI) following foliar applications of AS19 and AS21, with reductions ranging from 25 to 38.33% compared to control treatments. Scanning electron microscopy revealed substantial degradation of fungal mycelium by the strains, accompanied by the production of hydrolytic enzymes. These findings suggest the potential of Pseudomonas strains AS19 and AS21 as promising BCAs against BL&SB and other fungal pathogens. However, further field trials are warranted to validate their efficacy under natural conditions and elucidate the specific bacterial metabolites responsible for inducing systemic resistance. This study contributes to the advancement of sustainable disease management strategies and emphasizes the potential of Pseudomonas strains AS19 and AS21 in combating BL&SB and other fungal diseases affecting agricultural crops.
Collapse
Affiliation(s)
- Manvika Sahgal
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India.
| | - Neha Saini
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Vandana Jaggi
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - N T Brindhaa
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Manisha Kabdwal
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Rajesh Pratap Singh
- Department of Plant Pathology, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Udam Singh Nagar, Pantnagar, Uttarakhand, 263145, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, 26, India
| |
Collapse
|
2
|
Todorović I, Abrouk D, Kyselková M, Lavire C, Rey M, Raičević V, Jovičić-Petrović J, Moënne-Loccoz Y, Muller D. Two novel species isolated from wheat rhizospheres in Serbia: Pseudomonas serbica sp. nov. and Pseudomonas serboccidentalis sp. nov. Syst Appl Microbiol 2023; 46:126425. [PMID: 37146562 DOI: 10.1016/j.syapm.2023.126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Pseudomonas strains IT-194P, IT-215P, IT-P366T and IT-P374T were isolated from the rhizospheres of wheat grown in soils sampled from different fields (some of them known to be disease-suppressive) located near Mionica, Serbia. Phylogenetic analysis of the 16S rRNA genes and of whole genome sequences showed that these strains belong to two potentially new species, one containing strains IT-P366T and IT-194P and clustering (whole genome analysis) next to P. umsongensis DSM16611T, and another species containing strains IT-P374T and IT-215P and clustering next to P. koreensis LMG21318T. Genome analysis confirmed the proposition of novel species, as ANI was below the threshold of 95% and dDDH below 70% for strains IT-P366T (compared with P. umsongensis DSM16611T) and IT-P374T (compared with P. koreensis LMG21318T). Unlike P. umsongensis DSM16611T, strains of P. serbica can grow on D-mannitol, but not on pectin, D-galacturonic acid, L-galactonic acid lactone and α-hydroxybutyric acid. In contrary to P. koreensis LMG21318T, strains of P. serboccidentalis can use sucrose, inosine and α-ketoglutaric acid (but not L-histidine) as carbon sources. Altogether, these results indicate the existence of two novel species for which we propose the names Pseudomonas serbica sp. nov., with the type strain IT-P366T (=CFBP 9060 T = LMG 32732 T = EML 1791 T) and Pseudomonas serboccidentalis sp. nov., with the type strain IT-P374T (=CFBP 9061 T = LMG 32734 T = EML 1792 T). Strains from this study presented a set of phytobeneficial functions modulating plant hormonal balance, plant nutrition and plant protection, suggesting a potential as Plant Growth-Promoting Rhizobacteria (PGPR).
Collapse
Affiliation(s)
- Irena Todorović
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France; University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Martina Kyselková
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Céline Lavire
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Marjolaine Rey
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Vera Raičević
- University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Jelena Jovičić-Petrović
- University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
3
|
Park MR, Gauttam R, Fong B, Chen Y, Lim HG, Feist AM, Mukhopadhyay A, Petzold CJ, Simmons BA, Singer SW. Revealing oxidative pentose metabolism in new Pseudomonas putida isolates. Environ Microbiol 2023; 25:493-504. [PMID: 36465038 PMCID: PMC10107873 DOI: 10.1111/1462-2920.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The Pseudomonas putida group in the Gammaproteobacteria has been intensively studied for bioremediation and plant growth promotion. Members of this group have recently emerged as promising hosts to convert intermediates derived from plant biomass to biofuels and biochemicals. However, most strains of P. putida cannot metabolize pentose sugars derived from hemicellulose. Here, we describe three isolates that provide a broader view of the pentose sugar catabolism in the P. putida group. One of these isolates clusters with the well-characterized P. alloputida KT2440 (Strain BP6); the second isolate clustered with plant growth-promoting strain P. putida W619 (Strain M2), while the third isolate represents a new species in the group (Strain BP8). Each of these isolates possessed homologous genes for oxidative xylose catabolism (xylDXA) and a potential xylonate transporter. Strain M2 grew on arabinose and had genes for oxidative arabinose catabolism (araDXA). A CRISPR interference (CRISPRi) system was developed for strain M2 and identified conditionally essential genes for xylose growth. A glucose dehydrogenase was found to be responsible for initial oxidation of xylose and arabinose in strain M2. These isolates have illuminated inherent diversity in pentose catabolism in the P. putida group and may provide alternative hosts for biomass conversion.
Collapse
Affiliation(s)
- Mee-Rye Park
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rahul Gauttam
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Bonnie Fong
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hyun Gyu Lim
- Joint BioEnergy Institute, Emeryville, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Adam M Feist
- Joint BioEnergy Institute, Emeryville, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
4
|
Li Y, Li S, Liang Z, Cai Q, Zhou T, Zhao C, Wu X. RNA-seq Analysis of Rhizoctonia solani AG-4HGI Strain BJ-1H Infected by a New Viral Strain of Rhizoctonia solani Partitivirus 2 Reveals a Potential Mechanism for Hypovirulence. PHYTOPATHOLOGY 2022; 112:1373-1385. [PMID: 34965159 DOI: 10.1094/phyto-08-21-0349-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rhizoctonia solani partitivirus 2 (RsPV2), in the genus Alphapartitivirus, confers hypovirulence on R. solani AG-1-IA, the causal agent of rice sheath blight. In this study, a new strain of RsPV2 obtained from R. solani AG-4HGI strain BJ-1H, the causal agent of black scurf on potato, wasidentified and designated as Rhizoctonia solani partitivirus 2 strain BJ-1H (RsPV2-BJ). An RNA sequencing analysis of strain BJ-1H and the virus RsPV2-BJ-free strain BJ-1H-VF derived from strain BJ-1H was conducted to investigate the potential molecular mechanism of hypovirulence induced by RsPV2-BJ. In total, 14,319 unigenes were obtained, and 1,341 unigenes were identified as differentially expressed genes (DEGs), with 570 DEGs being down-regulated and 771 being up-regulated. Notably, several up-regulated DEGs were annotated to cell wall degrading enzymes, including β-1,3-glucanases. Strain BJ-1H exhibited increased expression of β-1,3-glucanase after RsPV2-BJ infection, suggesting that cell wall autolysis activity in R. solani AG-4HGI strain BJ-1H might be promoted by RsPV2-BJ, inducing hypovirulence in its host fungus R. solani AG-4HGI. To the best of our knowledge, this is the first report on the potential mechanism of hypovirulence induced by a mycovirus in R. solani.
Collapse
Affiliation(s)
- Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Zhijian Liang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
- College of Horticulture, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens. BIOLOGY 2022; 11:biology11010140. [PMID: 35053136 PMCID: PMC8773043 DOI: 10.3390/biology11010140] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
P. aeruginosa strain FG106 was isolated from the rhizosphere of tomato plants and identified through morphological analysis, 16S rRNA gene sequencing, and whole-genome sequencing. In vitro and in vivo experiments demonstrated that this strain could control several pathogens on tomato, potato, taro, and strawberry. Volatile and non-volatile metabolites produced by the strain are known to adversely affect the tested pathogens. FG106 showed clear antagonism against Alternaria alternata, Botrytis cinerea, Clavibacter michiganensis subsp. michiganensis, Phytophthora colocasiae, P. infestans, Rhizoctonia solani, and Xanthomonas euvesicatoria pv. perforans. FG106 produced proteases and lipases while also inducing high phosphate solubilization, producing siderophores, ammonia, indole acetic acid (IAA), and hydrogen cyanide (HCN) and forming biofilms that promote plant growth and facilitate biocontrol. Genome mining approaches showed that this strain harbors genes related to biocontrol and growth promotion. These results suggest that this bacterial strain provides good protection against pathogens of several agriculturally important plants via direct and indirect modes of action and could thus be a valuable bio-control agent.
Collapse
|
6
|
Valente J, Gerin F, Le Gouis J, Moënne-Loccoz Y, Prigent-Combaret C. Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria. PLANT, CELL & ENVIRONMENT 2020; 43:246-260. [PMID: 31509886 DOI: 10.1111/pce.13652] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 05/27/2023]
Abstract
Plant interactions with plant growth-promoting rhizobacteria (PGPR) are highly dependent on plant genotype. Modern plant breeding has largely sought to improve crop performance but with little focus on the optimization of plant × PGPR interactions. The interactions of the model PGPR strain Pseudomonas kilonensis F113 were therefore compared in 199 ancient and modern wheat genotypes. A reporter system, in which F113 colonization and expression of 2,4-diacetylphloroglucinol biosynthetic genes (phl) were measured on roots was used to quantify F113 × wheat interactions under gnotobiotic conditions. Thereafter, eight wheat accessions that differed in their ability to interact with F113 were inoculated with F113 and grown in greenhouse in the absence or presence of stress. F113 colonization was linked to improved stress tolerance. Moreover, F113 colonization and phl expression were higher overall on ancient genotypes than modern genotypes. F113 colonization improved wheat performance in the four genotypes that showed the highest level of phl expression compared with the four genotypes in which phl expression was lowest. Taken together, these data suggest that recent wheat breeding strategies have had a negative impact on the ability of the plants to interact with PGPR.
Collapse
Affiliation(s)
- Jordan Valente
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Florence Gerin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | | | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
7
|
Beaton A, Lood C, Cunningham-Oakes E, MacFadyen A, Mullins AJ, Bestawy WE, Botelho J, Chevalier S, Coleman S, Dalzell C, Dolan SK, Faccenda A, Ghequire MGK, Higgins S, Kutschera A, Murray J, Redway M, Salih T, da Silva AC, Smith BA, Smits N, Thomson R, Woodcock S, Welch M, Cornelis P, Lavigne R, van Noort V, Tucker NP. Community-led comparative genomic and phenotypic analysis of the aquaculture pathogen Pseudomonas baetica a390T sequenced by Ion semiconductor and Nanopore technologies. FEMS Microbiol Lett 2019; 365:4951603. [PMID: 29579234 PMCID: PMC5909648 DOI: 10.1093/femsle/fny069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas baetica strain a390T is the type strain of this recently described species and here we present its high-contiguity draft genome. To celebrate the 16th International Conference on Pseudomonas, the genome of P. baetica strain a390T was sequenced using a unique combination of Ion Torrent semiconductor and Oxford Nanopore methods as part of a collaborative community-led project. The use of high-quality Ion Torrent sequences with long Nanopore reads gave rapid, high-contiguity and -quality, 16-contig genome sequence. Whole genome phylogenetic analysis places P. baetica within the P. koreensis clade of the P. fluorescens group. Comparison of the main genomic features of P. baetica with a variety of other Pseudomonas spp. suggests that it is a highly adaptable organism, typical of the genus. This strain was originally isolated from the liver of a diseased wedge sole fish, and genotypic and phenotypic analyses show that it is tolerant to osmotic stress and to oxytetracycline.
Collapse
Affiliation(s)
- Ainsley Beaton
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Cédric Lood
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium.,Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Edward Cunningham-Oakes
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff CF10 3AX, UK
| | - Alison MacFadyen
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK
| | - Alex J Mullins
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff CF10 3AX, UK
| | - Walid El Bestawy
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - João Botelho
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228 Porto 4050-313, Portugal
| | - Sylvie Chevalier
- Laboratoire Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen, 55, rue St Germain, Evreux 27000, France
| | - Shannon Coleman
- Lower Mall Research Station, University of British Columbia, 2259 Lower Mall, Vancouver, BC V6T 1Z4, Canada
| | - Chloe Dalzell
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Stephen K Dolan
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alberto Faccenda
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Maarten G K Ghequire
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Steven Higgins
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Alexander Kutschera
- Department of Phytopathology, Center of Life and Food Sciences, Technical University of Munich, Weihenstephan D-85354, Germany
| | - Jordan Murray
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Martha Redway
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Talal Salih
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Ana C da Silva
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Brian A Smith
- School of Plant Sciences, The University of Arizona, P.O. Box 210036, Forbes Building, 303 Tucson, Arizona 85721-0036, USA
| | - Nathan Smits
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Ryan Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Stuart Woodcock
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Pierre Cornelis
- Laboratoire Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen, 55, rue St Germain, Evreux 27000, France
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
8
|
Keshavarz-Tohid V, Vacheron J, Dubost A, Prigent-Combaret C, Taheri P, Tarighi S, Taghavi SM, Moënne-Loccoz Y, Muller D. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Syst Appl Microbiol 2019; 42:468-480. [DOI: 10.1016/j.syapm.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022]
|