1
|
Dietrich M, Panhölzl C, Angel R, Giguere AT, Randi D, Hausmann B, Herbold CW, Pötsch EM, Schaumberger A, Eichorst SA, Woebken D. Plant roots affect free-living diazotroph communities in temperate grassland soils despite decades of fertilization. Commun Biol 2024; 7:846. [PMID: 38987659 PMCID: PMC11237082 DOI: 10.1038/s42003-024-06522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Fixation of atmospheric N2 by free-living diazotrophs accounts for an important proportion of nitrogen naturally introduced to temperate grasslands. The effect of plants or fertilization on the general microbial community has been extensively studied, yet an understanding of the potential combinatorial effects on the community structure and activity of free-living diazotrophs is lacking. In this study we provide a multilevel assessment of the single and interactive effects of different long-term fertilization treatments, plant species and vicinity to roots on the free-living diazotroph community in relation to the general microbial community in grassland soils. We sequenced the dinitrogenase reductase (nifH) and the 16S rRNA genes of bulk soil and root-associated compartments (rhizosphere soil, rhizoplane and root) of two grass species (Arrhenatherum elatius and Anthoxanthum odoratum) and two herb species (Galium album and Plantago lanceolata) growing in Austrian grassland soils treated with different fertilizers (N, P, NPK) since 1960. Overall, fertilization has the strongest effect on the diazotroph and general microbial community structure, however with vicinity to the root, the plant effect increases. Despite the long-term fertilization, plants strongly influence the diazotroph communities emphasizing the complexity of soil microbial communities' responses to changing nutrient conditions in temperate grasslands.
Collapse
Affiliation(s)
- Marlies Dietrich
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Christopher Panhölzl
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Roey Angel
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Andrew T Giguere
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dania Randi
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Te Kura Pūtaiao Koiora, School of Biological Sciences, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, New Zealand
| | - Erich M Pötsch
- Institute of Plant Production and Cultural Landscape, Agricultural Research and Education Centre, Raumberg-Gumpenstein, Austria
| | - Andreas Schaumberger
- Institute of Plant Production and Cultural Landscape, Agricultural Research and Education Centre, Raumberg-Gumpenstein, Austria
| | - Stephanie A Eichorst
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Chen Z, Liu Z, Song C. Agricultural fertilization near marshes impacts the potential for greenhouse gas emissions from wetland ecosystems by modifying microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172400. [PMID: 38631634 DOI: 10.1016/j.scitotenv.2024.172400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Ensuring agricultural security and preserving the health of wetland ecosystems are crucial concerns facing northeast China. However, the adverse effects of environmental pollution, especially nitrogen (N), caused by prolonged agricultural development on the health of marsh wetlands cannot be systematically recognized. To address this issue, an 18-year trial with four different levels of N application was carried out in a typical area of the Northeast region: 0, 6, 12, and 24 gN·m-2·a-1 (referred to as CK, N6, N12, and N24, respectively) to investigate changes in wetland ecological functioning. The results showed that long-term N input significantly enhanced soil N availability. High-level of N addition (N24) significantly reduced soil bacterial richness in October, while fungal diversity was significantly higher in June than in October for both control and N6 treatments. The main environmental factors affecting microorganisms in June were TN, NH4+, and EC, while bacterial and fungal communities were influenced by TN and Leaf Area Index (LAI), respectively, in October. It was found that the AN16S gene was significantly higher in June than in October, indicating that summer is the critical time for N removal in the wetland. N addition significantly reduced the abundance of the NIFH gene and decreased the N fixation potential of the wetland. In June, low and medium levels of N inputs promoted denitrification processes in the wetland and elevated the wetland N2O emission potential. The abundance of NARG, NIRK, and NOSZ genes decreased significantly in October compared to June, indicating a decrease in the wetland N2O emission potential. Additionally, it was observed that soil methanotrophs were positively affected by NH4+ and TN in October, thereby reducing the wetland CH4 emission potential. Our research provides a systematic understanding of the impact of agricultural N pollution on marsh wetlands, which can inform strategies to protect wetland health.
Collapse
Affiliation(s)
- Zhenbo Chen
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China
| | - Zhihong Liu
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China.
| | - Changchun Song
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|
3
|
Shi X, Tan W, Tang S, Ling Q, Tang C, Qin P, Luo S, Zhao Y, Yu F, Li Y. Metagenomics reveals taxon-specific responses of soil nitrogen cycling under different fertilization regimes in heavy metal contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118766. [PMID: 37579601 DOI: 10.1016/j.jenvman.2023.118766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Soil deficiency, cyclic erosion, and heavy metal pollution have led to fertility loss and ecological function decline in mining areas. Fertilization is an important way to rapidly replenish soil nutrients, which have a major influence on the soil nitrogen cycling process, but different fertilization regimes have different impacts on soil properties and microbial functional potentials. Here, metagenomic sequencing was used to investigate the different responses of key functional genes of microbial nitrogen cycling to fertilization regimes and explore the potential effects of soil physicochemical properties on the key functional genes. The results indicated that AC-HH (ammonium chloride-high frequency and concentration) treatment significantly increased the gene abundance of norC (13.40-fold), nirK (5.46-fold), and napA (5.37-fold). U-HH (urea-high frequency and concentration) treatment significantly increased the gene abundance of hao (6.24-fold), pmoA-amoA (4.32-fold) norC (7.00-fold), nosZ (3.69-fold), and nirK (6.88-fold). Functional genes were distributed differently among the 10 dominant phyla. The nifH and nifK genes were distributed only in Proteobacteria. The hao gene was distributed in Gemmatimonadetes, Nitrospirae and Proteobacteria. Fertilization regimes caused changes in functional redundancy in soil, and nirK and nirB, which are involved in denitrification, were present in different genera. Fertilization regimes with high frequency and high concentration were more likely to increase the gene abundance at the genus level. In summary, this study provides insights into the taxon-specific response of soil nitrogen cycling under different fertilization regimes, where changes in fertilization regimes affect microbial nitrogen cycling by altering soil physicochemical properties in a complex dynamic environment.
Collapse
Affiliation(s)
- Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Weilan Tan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shuting Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Qiujie Ling
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Chijian Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Peiqing Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yinjun Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
4
|
Min K, Zheng T, Zhu X, Bao X, Lynch L, Liang C. Bacterial community structure and assembly dynamics hinge on plant litter quality. FEMS Microbiol Ecol 2023; 99:fiad118. [PMID: 37771081 DOI: 10.1093/femsec/fiad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
Litter decomposition is a fundamental ecosystem process controlling the biogeochemical cycling of energy and nutrients. Using a 360-day lab incubation experiment to control for environmental factors, we tested how litter quality (low C/N deciduous vs. high C/N coniferous litter) governed the assembly and taxonomic composition of bacterial communities and rates of litter decomposition. Overall, litter mass loss was significantly faster in soils amended with deciduous (DL) rather than coniferous (CL) litter. Communities degrading DL were also more taxonomically diverse and exhibited stochastic assembly throughout the experiment. By contrast, alpha-diversity rapidly declined in communities exposed to CL. Strong environmental selection and competitive biological interactions induced by molecularly complex, nutrient poor CL were reflected in a transition from stochastic to deterministic assembly after 180 days. Constraining how the diversity and assembly of microbial populations modulates core ecosystem processes, such as litter decomposition, will become increasingly important under novel climate conditions, and as policymakers and land managers emphasize soil carbon sequestration as a key natural climate solution.
Collapse
Affiliation(s)
- Kaikai Min
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tiantian Zheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Xuefeng Zhu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Xuelian Bao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Laurel Lynch
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| |
Collapse
|
5
|
Li Y, Shi X, Tan W, Ling Q, Pei F, Luo S, Qin P, Yuan H, Huang L, Yu F. Metagenomics combined with metabolomics reveals the effect of Enterobacter sp. inoculation on the rhizosphere microenvironment of Bidens pilosa L. in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132033. [PMID: 37453352 DOI: 10.1016/j.jhazmat.2023.132033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Metagenomics analysis was performed to determine the effects of Enterobacter sp. FM-1 (FM-1) on key genera as well as functional genes in the rhizosphere of Bidens pilosa L. (B. pilosa L.). Moreover, metabolomics was used to reveal the differences among rhizosphere metabolites after FM-1 inoculation. FM-1 inoculation significantly increased the activity of enzymes associated with the carbon cycle in soil; among them, invertase activity increased by 5.52 units compared to a control. Specifically, the relative abundance of beneficial genera increased significantly, such as Lysobacter (0.45-2.58 unit increase) in low-contamination soils (LC) and Pseudomonas (31.17-45.99 unit increase) in high-contamination soils (HC). Comparison of different transformation processes of the C cycle revealed that inoculation of FM-1 increased the abundance of functional genes related to the carbon cycle in LC soil. In contrast, the nitrogen cycling pathway was significantly elevated in both the LC and HC soils. FM-1 inoculation reduced HM resistance gene abundance in the rhizosphere soil of B. pilosa L. in the LC soil. Moreover, FM-1 and B. pilosa L. interactions promoted the secretion of rhizosphere metabolites, in which lipids and amino acids played important roles in the phytoremediation process. Overall, we explored the rhizosphere effects induced by plantmicrobe interactions, providing new insights into the functional microbes and rhizosphere metabolites involved in phytoremediation.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Weilan Tan
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fengmei Pei
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Shiyu Luo
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Peiqing Qin
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Huijian Yuan
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Liuan Huang
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China.
| |
Collapse
|
6
|
Xu Y, Zhu L, Vukanti R, Wang J, Shen C, Ge Y. Nano-Nd 2O 3 reduced soil bacterial community function by altering the relative abundance of rare and sensitive taxa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27979-y. [PMID: 37269512 DOI: 10.1007/s11356-023-27979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Nanoparticulate-Nd2O3 (nano-Nd2O3) has been excessively utilized in agriculture, industry, and medicine. Hence, nano-Nd2O3 can have environmental implications. However, the impact of nano-Nd2O3 on alpha diversity, composition, and function of soil bacterial communities has not been thoroughly evaluated. We amended soil to achieve different concentrations of nano-Nd2O3 (0, 10, 50, and 100 mg kg-1 soil) and incubated the mesocosms for 60 days. On days 7 and 60 of the experiment, we measured the effect of nano-Nd2O3 on alpha diversity and composition of soil bacterial community. Further, the effect of nano-Nd2O3 on the function of soil bacterial community was assessed based on changes in the activities of the six potential enzymes that mediate the cycling of nutrients in the soil. Nano-Nd2O3 did not alter the alpha diversity and composition of the soil bacterial community; however, it negatively affected community function in a dose-dependent manner. Specifically, the activities of β-1,4-glucosidase and β-1,4-n-acetylglucosaminidase that mediate soil carbon and nitrogen cycling, respectively, were significantly affected on days 7 and 60 of the exposure. The effect of nano-Nd2O3 on the soil enzymes correlated with changes in relative abundances of the rare and sensitive taxa, viz., Isosphaerales, Isosphaeraceae, Ktedonobacteraceae, and Streptomyces. Overall, we provide information for the safe implementation of technological applications that use nano-Nd2O3.
Collapse
Affiliation(s)
- Yongli Xu
- College of Mining Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Mining Development and Security Technology, Tangshan, 063210, Hebei, China
| | - Liyao Zhu
- College of Mining Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Mining Development and Security Technology, Tangshan, 063210, Hebei, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Raja Vukanti
- Department of Microbiology, Bhavan's Vivekananda College, Secunderabad, 500094, India
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
A New Perspective for Vineyard Terroir Identity: Looking for Microbial Indicator Species by Long Read Nanopore Sequencing. Microorganisms 2023; 11:microorganisms11030672. [PMID: 36985245 PMCID: PMC10054463 DOI: 10.3390/microorganisms11030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Grapevine is one of the most important fruit crops worldwide, being Portugal one of the top wine producers. It is well established that wine sensory characteristics from a particular region are defined by the physiological responses of the grapevine to its environment and thus, the concept of terroir in viticulture was established. Among all the factors that contribute to terroir definition, soil microorganisms play a major role from nutrient recycling to a drastic influence on plant fitness (growth and protection) and of course wine production. Soil microbiome from four different terroirs in Quinta dos Murças vineyard was analysed through long-read Oxford Nanopore sequencing. We have developed an analytical pipeline that allows the identification of function, ecologies, and indicator species based on long read sequencing data. The Douro vineyard was used as a case study, and we were able to establish microbiome signatures of each terroir.
Collapse
|
8
|
Zhou G, Fan K, Li G, Gao S, Chang D, Liang T, Li S, Liang H, Zhang J, Che Z, Cao W. Synergistic effects of diazotrophs and arbuscular mycorrhizal fungi on soil biological nitrogen fixation after three decades of fertilization. IMETA 2023; 2:e81. [PMID: 38868350 PMCID: PMC10989903 DOI: 10.1002/imt2.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 06/14/2024]
Abstract
Biological nitrogen (N) fixation (BNF) via diazotrophs is an important ecological process for the conversion of atmospheric N to biologically available N. Although soil diazotrophs play a dominant role in BNF and arbuscular mycorrhizal fungi (AMF) serve as helpers to favor BNF, the response of soil BNF and diazotrophic communities to different long-term fertilizations and the role of AMF in diazotrophs-driven BNF are poorly understood. Herein, a 33-year fertilization experiment in a wheat-maize intercropping system was conducted to investigate the changes in soil BNF rates, diazotrophic and AMF communities, and their interactions after long-term representative fertilization (chemical fertilizer, cow manure, wheat straw, and green manure). We found a remarkable increase in soil BNF rates after more than three decades of fertilization compared with nonfertilized soil, and the green manure treatment rendered the highest enhancement. The functionality strengthening was mainly associated with the increase in the absolute abundance of diazotrophs and AMF and the relative abundance of the key ecological cluster of Module #0 (gained from the co-occurrence network of diazotrophic and AMF species) with dominant diazotrophs such as Skermanella and Azospirillum. Furthermore, although the positive correlations between diazotrophs and AMF were reduced under long-term organic fertilization regimes, green manuring could reverse the decline within Module #0, and this had a positive relationship with the BNF rate. This study suggests that long-term fertilization could promote N fixation and select specific groups of N fixers and their helpers in certain areas. Our work provides solid evidence that N fixation and certain groups of diazotrophic and AMF taxa and their interspecies relationship will be largely favored after the fertilized strategy of green manure.
Collapse
Affiliation(s)
- Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Guilong Li
- Institute of Soil & Fertilizer and Resource & EnvironmentJiangxi Academy of Agricultural SciencesNanchangChina
| | - Songjuan Gao
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Danna Chang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Ting Liang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Shun Li
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Hai Liang
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Jiudong Zhang
- Institute of Soil and Fertilizer and Water‐saving AgricultureGansu Academy of Agriculture ScienceLanzhouChina
| | - Zongxian Che
- Institute of Soil and Fertilizer and Water‐saving AgricultureGansu Academy of Agriculture ScienceLanzhouChina
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
9
|
Yan J, Han X, Lu X, Chen X, Zou W. Land use indirectly affects the cycling of multiple nutrients by altering the diazotrophic community in black soil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3788-3795. [PMID: 34921680 DOI: 10.1002/jsfa.11727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diazotrophic bacteria, as one of most important group of soil microorganisms, play critical roles in multiple ecosystem functions (i.e., multifunctionality). However, little information is available about the diazotrophic community in driving soil nutrient cycling and multifunctionality at different depths with distinct vegetation in the black soil region of northeastern China. To learn the interactions among land use, cycling of multiple nutrients and the diazotrophic community, we performed this study in grassland (GL), forested land and a cropland (CL) in soils at depths of 0-15 cm and 15-35 cm. RESULTS The highest nifH gene abundances were found in the CL treatment, while the highest diazotrophic species richness and diversity were detected in the GL in both soil layers. The nifH gene abundance was directly/positively correlated with soil bulk density and negatively correlated with land use and soil depth. The index of multiple nutrient cycling was directly/negatively affected by soil depth and indirectly/positively affected by land use. Land use directly/negatively affected soil pH and thus indirectly affected the diazotrophic community composition and the nutrient cycling index. The diversity and community composition of the diazotrophs together accounted for 95% of the differences in the multiple nutrient cycling index. CONCLUSION Soil diazotrophic communities undertake important roles in maintaining nutrient cycling and soil multifunctionality at depths of 0-15 cm and 15-35 cm layers with different land uses of the black soil region of China. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaozeng Han
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xinchun Lu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xu Chen
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Wenxiu Zou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
10
|
Nepel M, Angel R, Borer ET, Frey B, MacDougall AS, McCulley RL, Risch AC, Schütz M, Seabloom EW, Woebken D. Global Grassland Diazotrophic Communities Are Structured by Combined Abiotic, Biotic, and Spatial Distance Factors but Resilient to Fertilization. Front Microbiol 2022; 13:821030. [PMID: 35418962 PMCID: PMC8996192 DOI: 10.3389/fmicb.2022.821030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Grassland ecosystems cover around 37% of the ice-free land surface on Earth and have critical socioeconomic importance globally. As in many terrestrial ecosystems, biological dinitrogen (N2) fixation represents an essential natural source of nitrogen (N). The ability to fix atmospheric N2 is limited to diazotrophs, a diverse guild of bacteria and archaea. To elucidate the abiotic (climatic, edaphic), biotic (vegetation), and spatial factors that govern diazotrophic community composition in global grassland soils, amplicon sequencing of the dinitrogenase reductase gene—nifH—was performed on samples from a replicated standardized nutrient [N, phosphorus (P)] addition experiment in 23 grassland sites spanning four continents. Sites harbored distinct and diverse diazotrophic communities, with most of reads assigned to diazotrophic taxa within the Alphaproteobacteria (e.g., Rhizobiales), Cyanobacteria (e.g., Nostocales), and Deltaproteobacteria (e.g., Desulforomonadales) groups. Likely because of the wide range of climatic and edaphic conditions and spatial distance among sampling sites, only a few of the taxa were present at all sites. The best model describing the variation among soil diazotrophic communities at the OTU level combined climate seasonality (temperature in the wettest quarter and precipitation in the warmest quarter) with edaphic (C:N ratio, soil texture) and vegetation factors (various perennial plant covers). Additionally, spatial variables (geographic distance) correlated with diazotrophic community variation, suggesting an interplay of environmental variables and spatial distance. The diazotrophic communities appeared to be resilient to elevated nutrient levels, as 2–4 years of chronic N and P additions had little effect on the community composition. However, it remains to be seen, whether changes in the community composition occur after exposure to long-term, chronic fertilization regimes.
Collapse
Affiliation(s)
- Maximilian Nepel
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.,Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Roey Angel
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Hu T, Wang X, Zhen L, Gu J, Song Z, Sun W, Xie J. Succession of diazotroph community and functional gene response to inoculating swine manure compost with a lignocellulose-degrading consortium. BIORESOURCE TECHNOLOGY 2021; 337:125469. [PMID: 34320749 DOI: 10.1016/j.biortech.2021.125469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Diazotroph community contributes to the nitrogen mass and improves the agronomic quality of composting product, but their responses to microbial inoculation during composting are unclear. In this study, the lignocellulose-degrading consortium was inoculated at different levels (0%: CK (control) and 10%: T) to investigate their effects on the variations in the diazotroph community and functional gene during composting. In the later composting phase, the nifH gene copy number was 17.50-25.28% higher in T than CK. The nitrogenase abundance in CK and T were 0.042% and 0.046% in composting product, respectively. Network analysis indicated that inoculation affected the co-occurrence patterns of the diazotroph community and changed the keystone species composition. Partial least-squares path modeling showed that available carbon sources and the succession of the diazotroph community mainly determined the increased abundance of nifH gene. Microbial inoculation stimulated the diazotrophs activities, and was conducive to the nitrogen production in composting product.
Collapse
Affiliation(s)
- Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lisha Zhen
- Shaanxi Province Microbiology Institute, Xi'an, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Beltran-Garcia MJ, Martínez-Rodríguez A, Olmos-Arriaga I, Valdes-Salas B, Di Mascio P, White JF. Nitrogen fertilization and stress factors drive shifts in microbial diversity in soils and plants. Symbiosis 2021. [DOI: 10.1007/s13199-021-00787-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Chen S, Xiang X, Ma H, Penttinen P, Zhao J, Li H, Gao R, Zheng T, Fan G. Straw Mulching and Nitrogen Fertilization Affect Diazotroph Communities in Wheat Rhizosphere. Front Microbiol 2021; 12:658668. [PMID: 34093473 PMCID: PMC8175977 DOI: 10.3389/fmicb.2021.658668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022] Open
Abstract
Diazotrophs that carry out the biological fixation of atmospheric dinitrogen (N2) replenish biologically available nitrogen (N) in soil and are influenced by the input of inorganic and organic substrates. To date, little is known about the effects of combined organic substrate addition and N fertilization on the diazotroph community composition and structure in purple soils. We investigated the effects of N fertilization and straw mulching on diazotroph communities by quantifying and sequencing the nifH gene in wheat rhizosphere. The abundance and richness of diazotrophs were greater the higher the fertilization level in the mulched treatments, whereas in the nonmulched treatments (NSMs), richness was lowest with the highest N fertilization level. The abundance and α-diversity of diazotrophs correlated with most of the soil properties but not with pH. At the genus level, the relative abundances of Azospirillum, Bacillus, and Geobacter were higher in the NSMs and those of Pseudacidovorax, Skermanella, Azospira, Paraburkholderia, Azotobacter, Desulfovibrio, Klebsiella, and Pelomonas in the mulched treatments. The differences in community composition between the mulched and the NSMs were associated with differences in soil temperature and soil organic carbon and available potassium contents and C:N ratio. Overall, straw mulching and N fertilization were associated with changes in diazotroph community composition and higher abundance of nifH gene in alkaline purple soils.
Collapse
Affiliation(s)
- Songhe Chen
- Key Laboratory of Crop Eco-Physiology and farming system in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Xiang
- Key Laboratory of Crop Eco-Physiology and farming system in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Hongliang Ma
- Key Laboratory of Crop Eco-Physiology and farming system in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiarong Zhao
- Key Laboratory of Crop Eco-Physiology and farming system in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Han Li
- Key Laboratory of Crop Eco-Physiology and farming system in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Rencai Gao
- Key Laboratory of Crop Eco-Physiology and farming system in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ting Zheng
- Key Laboratory of Crop Eco-Physiology and farming system in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Gaoqiong Fan
- Key Laboratory of Crop Eco-Physiology and farming system in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Zou J, Yao Q, Liu J, Li Y, Song F, Liu X, Wang G. Changes of diazotrophic communities in response to cropping systems in a Mollisol of Northeast China. PeerJ 2020; 8:e9550. [PMID: 32742810 PMCID: PMC7368428 DOI: 10.7717/peerj.9550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nitrogen-fixing microorganisms play important roles in N cycling. However, knowledge related to the changes in the diazotrophic community in response to cropping systems is still rudimentary. In this study, the nifH gene was used to reveal the abundance and community compositions of diazotrophs in the cropping systems of continuous cropping of corn (CC) and soybean (SS) and soybean-corn rotation for growing corn (CSC) and soybean (SCS) in a black soil of Northeast China. The results showed that the abundance of the nifH gene was significantly higher in cropping soybean than in cropping corn under the same cropping system, while remarkably increased in the rotation system under the same crop. The Shannon index in the CC treatment was significantly higher than that in the other treatments, but the OTU number and Chao1 index had no significant change among the four treatments. Bradyrhizobium japonicum was the dominant diazotrophic species, and its relative abundance was at the lowest value in the CC treatment. In contrast, Skermanella sp. had the highest relative abundance in the CC treatment. A PCoA showed that the diazotrophic communities were separated between different cropping systems, and the variation caused by continuous corn cropping was the largest. Among the tested soil properties, the soil available phosphorus was a primary factor in determining diazotrophic community compositions. Overall, the findings of this study highlighted that the diazotrophic communities in black soils are very sensitive to cropping systems.
Collapse
Affiliation(s)
- Jiaxun Zou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.,College of Life Science, Heilongjiang University, Harbin, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Fuqiang Song
- College of Life Science, Heilongjiang University, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
15
|
Hu X, Liang A, Yao Q, Liu Z, Yu Z, Wang G, Liu J. Ridge Tillage Improves Soil Properties, Sustains Diazotrophic Communities, and Enhances Extensively Cooperative Interactions Among Diazotrophs in a Clay Loam Soil. Front Microbiol 2020; 11:1333. [PMID: 32714293 PMCID: PMC7344147 DOI: 10.3389/fmicb.2020.01333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/25/2020] [Indexed: 12/30/2022] Open
Abstract
Reduced tillage practices [such as ridge tillage (RT)] have been potential solutions to the weed pressures of long-term no tillage (NT) and the soil-intensive disturbances caused by conventional tillage [such as moldboard plow (MP) tillage]. Although soil diazotrophs are significantly important in global nitrogen (N) cycling and contribute to the pool of plant-available N in agroecosystems, little is currently known about the responses of diazotrophic communities to different long-term tillage practices. In the current study, we investigated the differences among the effects of NT, RT, and MP on soil properties, diazotrophic communities, and co-occurrence network patterns in bulk and rhizosphere soils under soybean grown in clay loam soil of Northeast China. The results showed that RT and MP led to higher contents of total C, N, and available K compared to NT in both bulk and rhizosphere soils, and RT resulted in higher soybean yield than NT and MP. Compared to NT and RT, MP decreased the relative abundances of free-living diazotrophs, while it promoted the growth of copiotrophic diazotrophs. Little differences of diazotrophic community diversity, composition, and community structure were detected between RT and NT, but MP obviously decreased diazotrophic diversity and changed the diazotrophic communities in contrast to NT and RT in bulk soils. Soil nitrogenous nutrients had negative correlations with diazotrophic diversity and significantly influenced the diazotrophic community structure. Across all diazotrophs' networks, the major diazotrophic interactions transformed into a cooperatively dominated network under RT, with more intense and efficient interactions among species than NT and MP. Overall, our study suggested that RT, with minor soil disturbances, could stabilize diazotrophic diversity and communities as NT and possessed highly positive interactions among diazotrophic species relative to NT and MP.
Collapse
Affiliation(s)
- Xiaojing Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Aizhen Liang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhuxiu Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
16
|
Xiao D, Liu X, Yang R, Tan Y, Zhang W, He X, Xu Z, Wang K. Nitrogen fertilizer and Amorpha fruticosa leguminous shrub diversely affect the diazotroph communities in an artificial forage grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134967. [PMID: 32000331 DOI: 10.1016/j.scitotenv.2019.134967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Soil diazotrophs have been known to be essential in biological nitrogen (N) fixation, which contributes to the sustainability of agricultural ecosystems. However, there remains an inadequacy of research on the effects of different N inputs from N fertilization and from symbiotic N fixation associated with legumes on the diazotroph communities in agricultural ecosystems. Hence, we investigated the variations in diazotroph abundance and community composition as well as the soil properties with different N inputs in the Guimu-1 hybrid elephant grass cultivation on karst soils in China. We conducted six different N treatments: control, Amorpha fruticosa planting at a spacing of 1.5 × 2 m (AFD1), A. fruticosa planting at a spacing of 1 × 2 m (AFD2), N fertilization (N), A. fruticosa planting at a spacing of 1.5 × 2 m with N fertilization (AFD1N), and A. fruticosa planting at a spacing of 1 × 2 m with N fertilization (AFD2N). Our results showed that the interaction between sampling time and N fertilization significantly affected the diazotroph abundance. In July, the diazotroph abundance significantly decreased in the N fertilization treatments: N, AFD1N, and AFD2N, compared to that in the control. The richness and Chao1 estimator of diazotrophs significantly increased in AFD2N and AFD1 correspondingly in December and July, relative to those in the control. Co-occurrence networks showed species-species interactions with high negative correlations that occurred more in the control than in the N input plots. The N input from N fertilization and legume planting directly increased the ammonium N and nitrate N and consequently affected the dissolved organic N and pH of the soil, thereby altering the diazotroph abundance and richness. Our findings demonstrated that both N fertilization and legumes could reduce the interspecific competition among diazotroph species by providing greater N availability in the forage grass.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Yang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjun Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
| | - Xunyang He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
| |
Collapse
|