1
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
2
|
Rai LS, Chauvel M, Sanchez H, van Wijlick L, Maufrais C, Cokelaer T, Sertour N, Legrand M, Sanyal K, Andes DR, Bachellier-Bassi S, d’Enfert C. Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26. PLoS Biol 2024; 22:e3002693. [PMID: 38905306 PMCID: PMC11221756 DOI: 10.1371/journal.pbio.3002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/03/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Department of Life Sciences, GITAM University, Bengaluru, Karnataka 561203, India
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Lasse van Wijlick
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Mélanie Legrand
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN-80, Sector-V, Salt Lake City, Kolkata, India
| | - David R. Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
3
|
Góralska K, Szybka M, Karuga FF, Pastuszak-Lewandoska D, Brzeziańska-Lasota E. Acquired resistance or tolerance? - in search of mechanisms underlying changes in the resistance profile of Candida albicans and Candida parapsilosis as a result of exposure to methotrexate. J Mycol Med 2024; 34:101476. [PMID: 38507825 DOI: 10.1016/j.mycmed.2024.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The increasing prevalence of fungal strains showing acquired resistance and multidrug resistance is an increasing therapeutic problem, especially in patients with a severely weakened immune system and undergoing chemotherapy. What is also extremely disturbing is the similarity of the resistance mechanisms of fungal cells and other eukaryotic cells, including human cells, which may contribute to the development of cross-resistance in fungi in response to substances used in e.g. anticancer treatment. An example of such a drug is methotrexate, which is pumped out of eukaryotic cells by ABC transmembrane transporters - in fungi, used to remove azoles from fungal cells. For this reason, the aim of the study was to analyze the expression levels of genes: ERG11, MDR1 and CDR1, potentially responsible for the occurrence of cross-resistance in Candida albicans and Candida parapsilosis as a result of fungal exposure to methotrexate (MTX). In vitro exposure of C. albicans and C. parapsilosis strains to methotrexate showed a high increase in resistance to fluconazole and a partial increase in resistance to voriconazole. Analysis of the expression of resistance genes showed varied responses of the tested strains depending on the species. In the case of C. albicans, an increase in the expression of the MDR1 gene was observed, and a decrease in ERG11 and CDR1. However, for C. parapsilosis there was an increase in the expression of the CDR1 gene and a decrease in ERG11 and MDR1. We noted the relationship between the level of resistance to voriconazole and the level of ERG11 gene expression in C. albicans. This indicates that this type of relationship is different for each species. Our research confirms that the mechanisms by which fungi acquire resistance and develop cross-resistance are highly complex and most likely involve several pathways simultaneously. The emergence of multidrug resistance may be related to the possibility of developing tolerance to antimycotics by fungi.
Collapse
Affiliation(s)
- Katarzyna Góralska
- Department of Biology and Parasitology, Chair of Biology and Medical Microbiology, Medical University of Lodz. Żeligowskiego Street 7/9 90-752 Lodz, Poland.
| | - Małgorzata Szybka
- Department of Microbiology and Medical Laboratory Immunology, Chair of Biology and Medical Microbiology, Medical University of Lodz. Pomorska Street 251 (Building C5) 92-213 Lodz, Poland
| | - Filip Franciszek Karuga
- Department of Biology and Parasitology, Chair of Biology and Medical Microbiology, Medical University of Lodz. Żeligowskiego Street 7/9 90-752 Lodz, Poland; Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Medical Laboratory Immunology, Chair of Biology and Medical Microbiology, Medical University of Lodz. Pomorska Street 251 (Building C5) 92-213 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz. Mazowiecka Street 5 (Building A6) 92-215 Lodz, Poland
| |
Collapse
|